Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề biến đổi các biểu thức hữu tỉ, giá trị của phân thức

Nội dung Chuyên đề biến đổi các biểu thức hữu tỉ, giá trị của phân thức Bản PDF - Nội dung bài viết Chuyên đề biến đổi các biểu thức hữu tỉ, giá trị của phân thức Chuyên đề biến đổi các biểu thức hữu tỉ, giá trị của phân thức Trong chuyên đề này, chúng ta sẽ tìm hiểu về cách biến đổi các biểu thức hữu tỉ và tính giá trị của phân thức. Để hiểu rõ hơn về chủ đề này, chúng ta cần nắm vững các kiến thức cơ bản sau: I. Biến đổi các biểu thức hữu tỉ: - Biểu thức hữu tỉ là một phân thức hoặc một dãy các phép toán được thực hiện trên các phân thức. - Để biến đổi một biểu thức hữu tỉ thành một phân thức, chúng ta cần áp dụng các quy tắc của phép toán cộng, trừ, nhân và chia trên các phân thức. II. Giá trị của phân thức: - Giá trị của một phân thức chỉ được xác định khi mẫu thức khác 0. - Đối với biểu thức hữu tỉ có hai biến x và y, giá trị của biểu thức chỉ được xác định khi có các cặp số (x; y) thỏa mãn mẫu thức khác 0. III. Bài tập và các dạng toán: Dạng 1: Tìm điều kiện xác định của phân thức. Chúng ta cần xác định giá trị của biến để mẫu thức không bằng 0. Dạng 2: Biến đổi biểu thức hữu tỉ thành phân thức. - Bước 1: Sử dụng quy tắc cộng, trừ, nhân và chia trên các phân thức để biến đổi. - Bước 2: Tiếp tục biến đổi đến khi có phân thức có dạng A/B với A, B là các đa thức và B khác 0. Dạng 3: Thực hiện phép tính với các biểu thức hữu tỉ. Sử dụng quy tắc phép toán đã học để biến đổi và tính giá trị của biểu thức. Dạng 4: Tìm x để giá trị của một phân thức thỏa mãn điều kiện cho trước. Sử dụng các kiến thức về giá trị phân thức, quy tắc dấu của các số và các hằng đẳng thức để giải bài toán. Thông qua việc hiểu rõ về các dạng toán và quy tắc trong chuyên đề này, chúng ta sẽ có thêm kiến thức và kỹ năng để giải các bài toán liên quan đến biến đổi biểu thức hữu tỉ và tính giá trị của phân thức.

Nguồn: sytu.vn

Đọc Sách

Ôn tập giữa học kỳ 1 Toán 8 năm 2023 - 2024 trường THCS Chu Văn An - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề cương hướng dẫn nội dung ôn tập kiểm tra giữa học kỳ 1 môn Toán 8 năm học 2023 – 2024 trường THCS Chu Văn An, quận Tây Hồ, thành phố Hà Nội. PHẦN I . NỘI DUNG KIẾN THỨC. A. ĐẠI SỐ. 1. Đơn thức nhiều biến, đa thức nhiều biến. 2. Các phép tính với đa thức nhiều biến. 3. Hằng đẳng thức đáng nhớ. 4. Vận dụng hằng đẳng thức vào phân tích đa thức thành nhân tử. B. HÌNH HỌC. 1. Hình chóp tam giác đều. 2. Hình chóp tứ giác đều. 3. Định lý Pythagore. PHẦN II . MỘT SỐ CÂU HỎI & BÀI TẬP THAM KHẢO.
Đề cương giữa kì 1 Toán 8 năm 2023 - 2024 trường Archimedes Đông Anh - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề cương ôn tập giữa học kì 1 môn Toán 8 năm học 2023 – 2024 trường TH – THCS – THPT Archimedes Đông Anh, thành phố Hà Nội. + Dạng 1: Rút gọn biểu thức. + Dạng 2: Tìm số chưa biết. + Dạng 3: Tính giá trị của biểu thức. + Dạng 4: Toán thực tế. + Dạng 5: Hình học. + Dạng 6: Nâng cao.
Đề cương giữa kì 1 Toán 8 năm 2023 - 2024 trường THCS Trọng Điểm - Quảng Ninh
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề cương hướng dẫn ôn tập giữa học kì 1 môn Toán 8 năm học 2023 – 2024 trường THCS Trọng Điểm, tỉnh Quảng Ninh. A. TÓM TẮT LÝ THUYẾT A.1. Đại số. A.2. Hình học trực quan. B. BÀI TẬP TRẮC NGHIỆM (8NB – 6TH – 4VD – 2 VDC). B.1. Đại số. B.2. Hình học. C. CÁC DẠNG TỰ LUẬN C.1. ĐẠI SỐ. Dạng 1: Bài tập về các phép tính về đa thức nhiều biến. Dạng 2: Bài tập về các hằng đẳng thức đáng nhớ. Dạng 3: Bài tập về vận dụng hằng đẳng thức vào phân tích đa thức thành nhân tử. + 3.1. Vận dụng trực tiếp hằng đẳng thức vào phân tích đa thức thành nhân tử. + 3.2. Vận dụng hằng đẳng thức thông qua nhóm số hạng và đặt nhân tử chung vào phân tích đa thức thành nhân tử. Dạng 4: Bài toán thực tế. C.2. HÌNH HỌC. Dạng 1. Tính diện tích xung quanh, thể tích, chiều cao hình chóp tam giác đều, tứ giác đều. Dạng 2. Toán thực tế liên quan đến các công thức diện tích xung quanh, thể tích của các hình chóp tam giác đều, tứ giác đều.
20 chuyên đề bồi dưỡng học sinh giỏi Hình học 8
Tài liệu gồm 276 trang, tuyển tập 20 chuyên đề bồi dưỡng học sinh giỏi Hình học 8. Trong mỗi chuyên đề, bao gồm kiến thức cần nhớ, một số ví dụ và bài tập vận dụng có đáp số và hướng dẫn giải chi tiết. Chuyên đề 1. Tứ giác. Chuyên đề 2. Hình thang. Hình thang cân. Chuyên đề 3. Đường trung bình của tam giác, của hình thang. Chuyên đề 4. Hình bình hành. Chuyên đề 5. Hình chữ nhật. Tính chất của các điểm cách đều một đường thẳng cho trước. Chuyên đề 6. Hình thoi và hình vuông. Chuyên đề 7. Đối xứng trục – đối xứng tâm. Chuyên đề 8. Hình phụ để giải toán trong chương tứ giác. Chuyên đề 9. Toán quỹ tích. Chuyên đề 10. Đa giác – đa giác đều. Chuyên đề 11. Diện tích đa giác. Chuyên đề 12. Phương pháp diện tích. Chuyên đề 13. Định lý Ta-lét trong tam giác. Chuyên đề 14. Tích chất đường phân giác của tam giác. Chuyên đề 15. Các trường hợp đồng dạng của tam giác. Chuyên đề 16. Các trường hợp đồng dạng của tam giác vuông. Chuyên đề 17. Định lý Menelaus – định lý Ce-va – định lý Van-oben. Chuyên đề 18. Hình hộp chữ nhật. Chuyên đề 19. Hình lăng trụ đứng. Chuyên đề 20. Hình chóp đều.