Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề giữa kỳ 2 Toán 9 năm 2022 - 2023 trường THCS Đống Đa - TP HCM

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra giữa học kỳ 2 môn Toán 9 năm học 2022 – 2023 trường THCS Đống Đa, quận Bình Thạnh, thành phố Hồ Chí Minh. Trích dẫn Đề giữa kỳ 2 Toán 9 năm 2022 – 2023 trường THCS Đống Đa – TP HCM : + Trong kỳ thi HKI môn Toán lớp 9, một phòng thi của trường có 24 thí sinh dự thi. Các thí sinh đều phải làm bài trên giấy thi của trường phát cho. Cuối buổi thi, sau khi thu bài, giám thị coi thi đếm được tổng số tờ là 48 tờ giấy thi. Hỏi trong phòng thi đó có bao nhiêu thí sinh làm bài 2 tờ giấy thi, bao nhiêu thí sinh làm bài 3 tờ giấy thi? Biết rằng có 2 thí sinh chỉ làm 1 tờ giấy thi và không có thí sinh nào làm bài nhiều hơn 3 tờ giấy thi. + Nhân dịp sinh nhật lần thứ 9 của một cửa hàng trà sữa, cửa hàng này mở hai chương trình khuyến mãi: Hình thức khuyến mãi 1: mua 4 tặng 1. Hình thức khuyến mãi 2: giảm 18% trên tổng hóa đơn. Bạn Mai muốn mua 11 ly trà sữa trân châu đường đen có giá 35000 đồng một ly. Bạn ấy nên chọn hình thức khuyến mãi nào để có lợi hơn? + Từ điểm M ở ngoài đường tròn (O; R), vẽ các tiếp tuyến MA và MB đến (O) (A và B là các tiếp điểm). Gọi H là giao điểm của MO và AB. a) Chứng minh: tứ giác MAOB nội tiếp và MO vuông góc AB. b) Từ M vẽ cát tuyến MDE (không qua O) cắt đường tròn (O) tại D và E (D nằm giữa M, E và tia ME nằm giữa hai tia MA và MO). Chứng minh: MA2 = MD.ME c) Gọi I là giao điểm của AB và DE. Chứng minh: HA là tia phân giác của DHE và ID.ME = IE.MD.

Nguồn: toanmath.com

Đọc Sách

Đề thi giữa học kì 2 Toán 9 năm 2020 - 2021 trường THCS Bình Hưng Hòa - TP HCM
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra chất lượng giữa học kì 2 Toán 9 năm học 2020 – 2021 trường THCS Bình Hưng Hòa, thành phố Hồ Chí Minh. Trích dẫn đề thi giữa học kì 2 Toán 9 năm 2020 – 2021 trường THCS Bình Hưng Hòa – TP HCM : + Cho hàm số y = −14×2 có đồ thị (P) và hàm số y = −12x − 2 có đồ thị (D). a) Vẽ (P) và (D) trên cùng hệ trục tọa độ Oxy. b) Tìm tọa độ giao điểm của (P) và (D) bằng phép tính. + Giải bài toán sau bằng cách lập hệ phương trình: Bạn Bình đem 15 tờ tiền giấy gồm 2 loại 20 000 đồng và 10 000 đồng đi siêu thị mua một món quà có giá trị là 245 000 đồng và được thối lại 5 000 đồng. Hỏi bạn Bình đem theo bao nhiêu tờ tiền mỗi loại? + Cho tam giác ABC nhọn (AB < AC) nội tiếp đường tròn (O). Các đường cao AD; BE; CF của tam giác cắt nhau tại H. a) Chứng minh tứ giác BFCE và AEHF nội tiếp. b) Kẻ đường kính AT. Chứng minh tứ giác BHCT là hình bình hành. c) Đường thẳng EF cắt đường thẳng BC tại K. HT cắt đường tròn tâm (O) tại I (I 6= T). Chứng minh ba điểm A; I; K thẳng hàng.
Đề thi giữa học kì 2 Toán 9 năm 2020 - 2021 trường THCS Kim Đồng - TP HCM
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra chất lượng giữa học kì 2 Toán 9 năm học 2020 – 2021 trường THCS Kim Đồng, thành phố Hồ Chí Minh. Trích dẫn đề thi giữa học kì 2 Toán 9 năm 2020 – 2021 trường THCS Kim Đồng – TP HCM : + Bạn An ra nhà sách mua 30 cây bút xanh và đỏ. Một cây bút xanh giá 4 000 đồng, một cây bút đỏ giá 5 000 đồng. Tổng số tiền phải trả là 132 000 đồng. Hỏi mỗi loại có bao nhiêu cây? + Một vật rơi tự do từ độ cao so với mặt đất là 80 mét. Bỏ qua sức cản không khí, quãng đường chuyển động s (mét) của vật rơi sau thời gian t được biểu diễn gần đúng bởi công thức s = 5t2, trong đó t là thời gian tính bằng giây. a) Sau 3 giây vật này cách mặt đất bao nhiêu mét?. b) Sau bao lâu kể từ khi bắt đầu rơi thì vật này chạm mặt đất? (Làm tròn kết quả đến chữ số hàng đơn vị). + Cho tam giác ABC nhọn nội tiếp đường tròn tâm O (AB < AC), có ba đường cao AD, BE, CF cắt nhau tại H (D thuộc BC, E thuộc AC, F thuộc AB). a) Chứng minh các tứ giác BFEC và tứ giác BFHD là các tứ giác nội tiếp. b) Vẽ đường kính AI của (O). Chứng minh AB · AC = AD · AI. c) Gọi K là trung điểm BC. Chứng minh I, K, H thẳng hàng.
Đề thi giữa học kì 2 Toán 9 năm 2020 - 2021 trường THCS Đông Thạnh - TP HCM
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra chất lượng giữa học kì 2 Toán 9 năm học 2020 – 2021 trường THCS Đông Thạnh, thành phố Hồ Chí Minh. Trích dẫn đề thi giữa học kì 2 Toán 9 năm 2020 – 2021 trường THCS Đông Thạnh – TP HCM : + Cho phương trình 4×2 + 4x − 3 = 0 (x là ẩn số). Không giải phương trình, hãy tính x21 + x22 + 3×1 + 3×2 (với x1, x2 là hai nghiệm của phương trình đã cho). + Có 25 quyển vở gồm 2 loại. Vở loại một giá 13000 đồng một quyển; vở loại hai giá 10000 đồng một quyển. Số tiền mua 25 quyển vở là 280000 đồng. Tính số quyển vở mỗi loại. + Cho hình vẽ. Biết đường tròn tâm O có sđBmC = 80◦, sđDnE = 60◦. Tính góc BOC và góc DAE.
Đề thi giữa học kỳ 2 Toán 9 năm 2018 - 2019 phòng GDĐT Tây Hồ - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi kiểm tra chất lượng giữa học kỳ 2 môn Toán 9 năm học 2018 – 2019 phòng Giáo dục và Đào tạo quận Tây Hồ, thành phố Hà Nội. Trích dẫn đề thi giữa học kỳ 2 Toán 9 năm 2018 – 2019 phòng GD&ĐT Tây Hồ – Hà Nội : + Hai vòi nước cùng chảy vào bể không có nước thì sau 12 giờ đầy bể. Nếu người ta mở cả hai vòi chảy trong 4 giờ rồi khóa vòi hai lại và để vòi một chảy tiếp 14 giờ nữa thì mới đầy bể. Tính thời gian mỗi vòi chảy một mình đầy bể. + Cho đường tròn (O; R) và đường thẳng d không có điểm chung với đường tròn. Từ điểm M thuộc đường thẳng d kẻ hai tiếp tuyến MA, MB tới đường tròn. Hạ OH vuông góc với đường thẳng d tại H. Nối AB cắt OH tại K, cắt OM tại I. Tia OM cắt đường tròn (O; R) tại E. a) Chứng minh AOBM là tứ giác nội tiếp b) Chứng minh OI.OM = OK.OH c) Chứng minh E là tâm đường tròn nội tiếp tam giác MAB d) Tìm vị trí của M trên đường thẳng d để diện tích tam giác OIK có giá trị lớn nhất. + Cho hai số dương x, y thỏa mãn x + y = 1. Tìm giá trị nhỏ nhất của biểu thức A.