Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi KSCL lớp 11 môn Toán học kì 1 (HK1) năm 2018 2019 trường Lý Thái Tổ Bắc Ninh

Nội dung Đề thi KSCL lớp 11 môn Toán học kì 1 (HK1) năm 2018 2019 trường Lý Thái Tổ Bắc Ninh Bản PDF Đề thi KSCL Toán lớp 11 HK1 năm 2018 – 2019 trường Lý Thái Tổ – Bắc Ninh mã đề 132 được biên soạn nhằm đánh giá lại tất cả các kiến thức Toán lớp 11 mà học sinh đã được truyền đạt trong giai đoạn học kỳ 1 vừa qua của năm học 2018 – 2019, kỳ thi được diễn ra vào ngày 21 tháng 01 năm 2019, đề gồm 05 trang với 50 câu trắc nghiệm, thí sinh làm bài trong 90 phút, đề thi có đáp án. Trích dẫn đề thi KSCL Toán lớp 11 HK1 năm 2018 – 2019 trường Lý Thái Tổ – Bắc Ninh : + Trên một đoạn đường giao thông có 2 con đường vuông góc với nhau tại O như hình vẽ. Một địa danh lịch sử có vị trí đặt tại M, vị trí M cách đường OE 150m và cách đường Ox 1km. Vì lý do thực tiễn người ta muốn làm một đoạn đường thẳng AB đi qua vị trí M, biết rằng giá trị để làm 100m đường là 150 triệu đồng. Chọn vị trí của A và B để hoàn thành con đường với chi phí thấp nhất. Hỏi chi phí thấp nhất để hoàn thành con đường là bao nhiêu? A. 3 tỷ đồng. B. 2, 178 tỷ đồng. C. 2,0987 tỷ đồng. D. 2,0963 tỷ đồng. [ads] + Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O. Gọi M, N, K lần lượt là trung điểm của CD, CB, SA. H là giao điểm của AC và MN .Giao điểm của SO với (MNK) là điểm E. Hãy chọn cách xác định điểm E đúng nhất trong bốn phương án sau: A. E là giao của KN với SO. B. E là giao của KH với SO. C. E là giao của MN với SO. D. E là giao của KM với SO. + Có 20 bông hoa trong đó có 8 bông đỏ, 7 bông vàng, 5 bông trắng. Chọn ngẫu nhiên 4 bông để tạo thành một bó. Có bao nhiên cách chọn để bó hoa có cả 3 màu?

Nguồn: sytu.vn

Đọc Sách

Đề thi học kì 1 (HK1) lớp 11 môn Toán năm 2019 2020 trường THPT Lê Quý Đôn TP HCM
Nội dung Đề thi học kì 1 (HK1) lớp 11 môn Toán năm 2019 2020 trường THPT Lê Quý Đôn TP HCM Bản PDF Nhằm giúp các em học sinh lớp 11 có tư liệu ôn tập để chuẩn bị cho kỳ thi học kì 1 môn Toán lớp 11, Sytu sưu tầm và chia sẻ đến các em nội dung đề thi + đáp án + lời giải chi tiết đề thi HK1 Toán lớp 11 năm học 2019 – 2020 trường THPT Lê Quý Đôn, thành phố Hồ Chí Minh. Trích dẫn đề thi HK1 Toán lớp 11 năm 2019 – 2020 trường THPT Lê Quý Đôn – TP HCM : + Một bàn dài có hai dãy ghế đối diện nhau, mỗi dãy gồm 8 ghế. Người ta muốn xếp chỗ ngồi cho 8 học sinh trường A và 8 học sinh trường B vào bàn nói trên. Hỏi có bao nhiêu cách xếp sao cho bất cứ 2 học sinh nào ngồi đối diện nhau thì khác trường với nhau? + Hộp thứ nhất có 2 bi đỏ và 10 bi vàng, hộp thứ hai có 8 bi đỏ và 4 bi vàng. Lấy từ mỗi hộp 3 viên bi. Tính xác suất để 6 bi được chọn có đủ hai màu. + Từ các chữ số 1; 2; 3; 4; 5; 6; 7; 8; 9 lập các số tự nhiên có 5 chữ số khác nhau. Chọn ngẫu nhiên một số trong các số đó. Tính xác suất để số được chọn là số tự nhiên chẵn, có đúng hai chữ số lẻ và 2 chữ số lẻ đứng cạnh nhau?
Đề thi học kì 1 (HK1) lớp 11 môn Toán năm 2019 2020 trường THPT Trần Phú TP HCM
Nội dung Đề thi học kì 1 (HK1) lớp 11 môn Toán năm 2019 2020 trường THPT Trần Phú TP HCM Bản PDF Nhằm giúp các em học sinh lớp 11 có tư liệu ôn tập để chuẩn bị cho kỳ thi học kì 1 môn Toán lớp 11, Sytu sưu tầm và chia sẻ đến các em nội dung đề thi + đáp án + lời giải chi tiết đề thi HK1 Toán lớp 11 năm học 2019 – 2020 trường THPT Trần Phú, thành phố Hồ Chí Minh. Trích dẫn đề thi HK1 Toán lớp 11 năm 2019 – 2020 trường THPT Trần Phú – TP HCM : + Từ các chữ số 0; 1; 2; 3; 4; 5; 6; 7; 8; 9 có thể lập được tất cả bao nhiêu số tự nhiên chẵn có năm chữ số khác nhau và trong năm chữ số đó có đúng hai chữ số lẻ và hai chữ số lẻ này không đứng cạnh nhau. + Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O. Gọi G là trọng tâm của tam giác SAD. Lấy điểm M thuộc cạnh AB sao cho AB = 3AM. 1) Tìm giao tuyến của mặt phẳng (SAD) và mặt phẳng (GBC). Tìm giao điểm H của đường thẳng BC với mặt phẳng (SGM). 2) Chứng minh rằng đường thẳng MG song song với mặt phẳng (SBC). 3) Mặt phẳng (a) qua M và song song với AD và SB, (a) cắt các cạnh CD, SD, SA lần lượt tại các điểm N, P, Q. Xác định thiết diện của mặt phẳng (a) với hình chóp S.ABCD. + Một hộp có chứa 4 quả cầu màu đỏ, 5 quả cầu màu xanh và 7 quả cầu màu vàng. Lấy ngẫu nhiên cùng lúc ra 4 quả cầu từ hộp đó. Tính xác suất sao cho 4 quả cầu được lấy ra có đúng 1 quả cầu màu đỏ và không quá 2 quả cầu màu vàng.
Đề thi học kì 1 (HK1) lớp 11 môn Toán năm 2019 2020 trường THPT Thủ Khoa Huân TP HCM
Nội dung Đề thi học kì 1 (HK1) lớp 11 môn Toán năm 2019 2020 trường THPT Thủ Khoa Huân TP HCM Bản PDF Nhằm giúp các em học sinh lớp 11 có tư liệu ôn tập để chuẩn bị cho kỳ thi học kì 1 môn Toán lớp 11, Sytu sưu tầm và chia sẻ đến các em nội dung đề thi + đáp án + lời giải chi tiết đề thi HK1 Toán lớp 11 năm học 2019 – 2020 trường THPT Thủ Khoa Huân, thành phố Hồ Chí Minh. Trích dẫn đề thi HK1 Toán lớp 11 năm 2019 – 2020 trường THPT Thủ Khoa Huân – TP HCM : + Cho A = {0; 1; 2; 3; 4; 5; 6; 7}. a/ Có thể lập được bao nhiêu số có 4 chữ số khác nhau? b/ Có thể lập được bao nhiêu số có 4 chữ số khác nhau và chia hết cho 5? c/ Gọi S là tập các số có bốn chữ số khác nhau được lập từ tập A. Lấy ngẫu nhiên một số từ tập S, tính xác suất số lấy được là một số chia hết cho 4. + Giải các phương trình lượng giác sau. + Tìm số hạng không chứa x trong khai triển (x2 – 1/x4)^12.
Đề thi học kì 1 (HK1) lớp 11 môn Toán năm 2019 2020 trường THPT Trần Nhân Tông TP HCM
Nội dung Đề thi học kì 1 (HK1) lớp 11 môn Toán năm 2019 2020 trường THPT Trần Nhân Tông TP HCM Bản PDF Nhằm giúp các em học sinh lớp 11 có tư liệu ôn tập để chuẩn bị cho kỳ thi học kì 1 môn Toán lớp 11, Sytu sưu tầm và chia sẻ đến các em nội dung đề thi + đáp án + lời giải chi tiết đề thi HK1 Toán lớp 11 năm học 2019 – 2020 trường THPT Trần Nhân Tông, thành phố Hồ Chí Minh. Trích dẫn đề thi HK1 Toán lớp 11 năm 2019 – 2020 trường THPT Trần Nhân Tông – TP HCM : + Từ 5 chữ số 1, 3, 4, 5, 7 có thể tạo thành bao nhiêu số có 4 chữ số trong mỗi trường hợp sau: a) Bốn chữ số đôi một khác nhau. b) Chữ số 1 có mặt 2 lần, các chữ số còn lại có mặt nhiều nhất 1 lần. + Tìm hệ số của số hạng chứa x^4 trong khai triển của biểu thức (1 + 2x)^6. + Tìm hệ số của số hạng chứa x4y4 trong khai triển của biểu thức (x2 + 1)(3x – 2y)^6.