Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tài liệu dạy thêm - học thêm chuyên đề phép toán cộng, trừ, nhân, chia phân số

Tài liệu gồm 22 trang, tổng hợp tóm tắt lý thuyết, hướng dẫn phương pháp giải các dạng toán và bài tập chuyên đề phép toán cộng, trừ, nhân, chia phân số, hỗ trợ giáo viên và học sinh lớp 6 trong quá trình dạy thêm – học thêm môn Toán 6. PHẦN I . TÓM TẮT LÍ THUYẾT. PHẦN II . CÁC DẠNG BÀI. Dạng 1 . Phép cộng các phân số. – Muốn cộng hai phân số có cùng mẫu số, ta cộng các tử và giữ nguyên mẫu a b a b m m m. – Muốn cộng hai phân số không cùng mẫu, ta viết các phân số đó dưới dạng hai phân số có cùng một mẫu rồi cộng các tử và giữa nguyên mẫu chung. Dạng 2 . Phép trừ các phân số. Muốn trừ một phân số cho một phân số, ta cộng số bị trừ với số đối của số trừ. Dạng 3 . Phép nhân, chia các phân số. – Rút gọn (nếu có thể) các phân số trong đề bài. – Áp dụng quy tắc nhân, chia phân số. – Áp dụng các tính chất cơ bản của phép nhân phân số. Dạng 4 . Viết một phân số dưới dạng tích, thương của hai phân số. a) Để viết một phân số dưới dạng tích hai phân số, ta làm như sau: + Bước 1. Rút gọn các phân số (nếu có thể). + Bước 2. Viết các số nguyên ở tử và mẫu của phân số sau khi rút gọn dưới dạng tích của hai số nguyên. + Bước 3. Lập các phân số có tử và mẫu chọn trong các số nguyên ở bước trên. b) Viết một phân số dưới dạng thương của hai phân số thỏa mãn điều kiện cho trước. Phương pháp giải: + Viết tử và mẫu của phân số dưới dạng tích của hai số nguyên. + Lập các phân số có tử và mẫu chọn trong các số nguyên đó sao cho chúng thỏa mãn điều kiện cho trước. + Chuyển phép nhân phân số thành phép chia cho số nghịch đảo. Dạng 5 . Bài toán tổng hợp. * Tính giá trị của biểu thức: Để tính giá trị của biểu thức được đúng và hợp lí, cần chú ý: • Thứ tự thực hiện các phép tính: Đối với biểu thức không chứa dấu ngoặc: Lũy thừa → Phép nhân, chia → Phép cộng và phép trừ. Đối với biểu thức có chứa dấu ngoặc: () → [] → {}. • Các tính chất cơ bản của phép nhân phân số. * Tìm x: Ta cần xác định quan hệ giữa các số trong phép nhân, phép chia. • Muốn tìm thừa số chưa biết, ta lấy tích chia cho thừa số đã biết. • Muốn tìm số bị chia, ta lấy thương nhân với số chia. • Muốn tìm số chia, ta lấy số bị chia chia cho số chia.

Nguồn: toanmath.com

Đọc Sách

Chuyên đề đoạn thẳng và độ dài đoạn thẳng
Tài liệu gồm 18 trang, trình bày lý thuyết trọng tâm, các dạng toán và bài tập chuyên đề đoạn thẳng và độ dài đoạn thẳng, có đáp án và lời giải chi tiết, hỗ trợ học sinh lớp 6 trong quá trình học tập chương trình Toán 6 phần Hình học chương 1: Đoạn thẳng. Mục tiêu : Kiến thức: + Nhận biết được khái niệm đoạn thẳng, độ dài đoạn thẳng. Kĩ năng: + Đếm được số đoạn thẳng tạo thành từ các điểm cho trước. + Chỉ ra được tính thẳng hàng và điểm nằm giữa hai điểm. + Tính được độ dài đoạn thẳng sử dụng công thức cộng độ dài đoạn thẳng. I. LÍ THUYẾT TRỌNG TÂM II. CÁC DẠNG BÀI TẬP Dạng 1 : Đếm số đoạn thẳng tạo thành từ các điểm cho trước. Dạng 2 : Xét tính thẳng hàng và điểm nằm giữa hai điểm còn lại. Điểm nằm giữa hai điểm: + Nếu OA và OB là hai tia đối nhau thì O nằm giữa A và B. + Nếu OA và OB là hai tia trùng nhau và OA OB thì A nằm giữa O và B. + Nếu MA MB AB thì M nằm giữa A và B và ngược lại. + Điểm M thuộc đoạn thẳng AB thì M nằm giữa A và B. Dạng 3 : Độ dài đoạn thẳng. Tính độ dài đoạn thẳng: Khi điểm M nằm giữa hai điểm A và B thì MA MB AB và ngược lại. Vẽ đoạn thẳng cho biết độ dài: + Vẽ đoạn thẳng trên tia: Trên tia Ox bao giờ cũng vẽ được một và chỉ một điểm M sao cho OM a (đơn vị độ dài). + Vẽ hai đoạn thẳng trên tia: Trên tia Ox vẽ hai đoạn thẳng OM a ON b. Nếu 0 a b thì điểm M nằm giữa hai điểm O và N.
Chuyên đề tia
Tài liệu gồm 12 trang, trình bày lý thuyết trọng tâm, các dạng toán và bài tập chuyên đề tia, có đáp án và lời giải chi tiết, hỗ trợ học sinh lớp 6 trong quá trình học tập chương trình Toán 6 phần Hình học chương 1: Đoạn thẳng. Mục tiêu : Kiến thức: + Nhận biết được tia, hai tia đối nhau, hai tia trùng nhau. Kĩ năng: + Vẽ được các tia thỏa mãn điều kiện cho trước. + Dựa vào khái niệm tia, xác định được điểm nằm giữa hai điểm còn lại. I. LÍ THUYẾT TRỌNG TÂM 1. Tia. Định nghĩa: Hình gồm điểm O và một phần đường thẳng bị chia ra bởi điểm O được gọi là một tia gốc O. 2. Hai tia đối nhau. Định nghĩa: Hai tia chung gốc Ox và Oy tạo thành đường thẳng xy được gọi là hai tia đối nhau. Nhận xét: Mỗi điểm trên đường thẳng là gốc chung của hai tia đối nhau. 3. Hai tia trùng nhau. II. CÁC DẠNG BÀI TẬP Dạng 1 : Nhận biết tia, hai tia đối nhau, hai tia trùng nhau. Bài toán 1. Nhận biết tia. + Bước 1. Sử dụng khái niệm một tia để xác định các tia có trong hình. Xác định điểm gốc của tia và phần đường thẳng được chia bởi gốc. + Bước 2. Sử dụng một trong các cách để gọi tên tia. Bài toán 2. Xác định tia đối. + Bước 1. Xác định các điểm trên hình là gốc chung của hai tia đối. + Bước 2. Xác định các tia có chung gốc và tạo thành một đường thẳng. Liệt kê tên các cặp tia đối nhau. Bài toán 3. Xác định tia trùng nhau. + Bước 1. Sử dụng khái niệm về hai tia trùng nhau để xác định trên hình vẽ. + Bước 2. Kể tên các cặp tia trùng nhau. Dạng 2 : Vẽ các tia theo điều kiện cho trước. Dạng 3 : Xác định điểm nằm giữa hai điểm khác.
Chuyên đề đường thẳng đi qua hai điểm
Tài liệu gồm 13 trang, trình bày lý thuyết trọng tâm, các dạng toán và bài tập chuyên đề đường thẳng đi qua hai điểm, có đáp án và lời giải chi tiết, hỗ trợ học sinh lớp 6 trong quá trình học tập chương trình Toán 6 phần Hình học chương 1: Đoạn thẳng. Mục tiêu : Kiến thức: + Nhận biết được tiên đề về đường thẳng đi qua hai điểm phân biệt. + Nhận biết được khái niệm hai đường thẳng cắt nhau, song song. Kĩ năng: + Vẽ được đường thẳng đi qua hai điểm. + Đếm được số đường thẳng trên hình vẽ cho trước. I. LÍ THUYẾT TRỌNG TÂM 1. Vẽ và đặt tên đường thẳng. Vẽ đường thẳng: + Vẽ đường thẳng đi qua hai điểm A và B. + Đặt cạnh thước đi qua hai điểm A và B. + Dùng bút chì vạch theo cạnh thước. Có một đường thẳng và chỉ một đường thẳng đi qua hai điểm A và B. Tên đường thẳng: Một đường thẳng có thể được đặt tên bằng: + Một chữ cái in thường. + Tên hai điểm thuộc đường thẳng đó. + Hai chữ cái in thường. 2. Đường thẳng trùng nhau, cắt nhau, song song. Hai đường trùng nhau: Hai đường thẳng AB và AC trùng nhau. Hai đường thẳng cắt nhau: Hai đường thẳng cắt nhau là hai đường thẳng có duy nhất một điểm chung. Hai đường thẳng AB và AC cắt nhau tại A. A là giao điểm của hai đường thẳng đó. Hai đường thẳng song song: Hai đường thẳng song song là hai đường thẳng không có điểm chung. Hai đường thẳng a và b không có điểm chung nào (dù có kéo dài mãi mãi về hai phía). Hai đường thẳng a và b song song với nhau. II. CÁC DẠNG BÀI TẬP Dạng 1 : Đếm số đường thẳng. Có một và chỉ một đường thẳng đi qua hai điểm phân biệt. Hai đường thẳng không trùng nhau được gọi là hai đường thẳng phân biệt. Dạng 2 : Giao điểm của hai đường thẳng cắt nhau. Giao điểm của hai đường thẳng cắt nhau là điểm chung của hai đường thẳng ấy.
Chuyên đề ba điểm thẳng hàng
Tài liệu gồm 16 trang, trình bày lý thuyết trọng tâm, các dạng toán và bài tập chuyên đề ba điểm thẳng hàng, có đáp án và lời giải chi tiết, hỗ trợ học sinh lớp 6 trong quá trình học tập chương trình Toán 6 phần Hình học chương 1: Đoạn thẳng. Mục tiêu : Kiến thức: + Nhận biết được ba điểm thẳng hàng, ba điểm không thẳng hàng. + Nhận biết được khái niệm điểm nằm giữa hai điểm. Kĩ năng: + Chỉ ra được điểm nằm giữa hai điểm còn lại. I. LÍ THUYẾT TRỌNG TÂM II. CÁC DẠNG BÀI TẬP Dạng 1 : Nhận biết ba điểm thẳng hàng hay không thẳng hàng. Để nhận biết ba điểm có thẳng hàng hay không, ta thường làm như sau: – Bước 1. Vẽ một đường thẳng đi qua hai trong ba điểm. – Bước 2: + Nếu điểm còn lại nằm trên đường thẳng vừa vẽ thì ba điểm thẳng hàng. + Nếu điểm còn lại không nằm trên đường thẳng vừa vẽ thì ba điểm không thẳng hàng. Dạng 2 : Xác định vị trí giữa ba điểm thẳng hàng. Ba điểm M, N, P thẳng hàng, trong đó: + Điểm M và điểm N nằm cùng phía đối với điểm P. + Điểm N và điểm P nằm cùng phía đối với điểm M. + Điểm M và điểm P nằm khác phía đối với điểm N. + Điểm N nằm giữa hai điểm M và P.