Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học kì 1 Toán 11 năm 2019 - 2020 trường Thanh Miện - Hải Dương

giới thiệu đến quý thầy, cô giáo và các em học sinh khối 11 đề thi học kì 1 Toán 11 năm học 2019 – 2020 trường THPT Thanh Miện – Hải Dương, kì thi nhằm giúp nhà trường nắm rõ chất lượng dạy và học môn Toán 11 của giáo viên và học sinh trong học kì vừa qua. Đề thi học kì 1 Toán 11 năm 2019 – 2020 trường Thanh Miện – Hải Dương mã đề 993, đề gồm 07 trang với 50 câu hỏi và bài toán trắc nghiệm, thời gian làm bài 90 phút, đề thi có đáp án mã đề 594, 993, 851, 464, 691, 412, 938, 205. Trích dẫn đề thi học kì 1 Toán 11 năm 2019 – 2020 trường Thanh Miện – Hải Dương : + Cho hình chóp S.ABCD có đáy ABCD không phải là hình thang. Trên cạnh SC lấy điểm M. Gọi N là giao điểm của đường thẳng SD với mặt phẳng AMB. Mệnh đề nào sau đây đúng? A. Ba đường thẳng AB, CD, MN đôi một song song. B. Ba đường thẳng AB, CD, MN đôi một cắt nhau. C. Ba đường thẳng AB, CD, MN cùng thuộc một mặt phẳng. D. Ba đường thẳng AB, CD, MN đồng quy. + Cho tứ diện ABCD. Gọi M, N lần lượt là trung điểm của AB, AC, E là điểm trên cạnh CD với ED = 3EC. Thiết diện tạo bởi mặt phẳng (MNE) và tứ diện ABCD là? A. Tứ giác MNEF với F là điểm bất kì trên cạnh BD. B. Tam giác MNE. C. Hình thang MNEF với F là điểm trên cạnh BD mà EF // BC. D. Hình bình hành MNEF với F là điểm trên cạnh BD mà EF // BC. [ads] + Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M, N lần lượt là trung điểm của SA và SD. Khi đó thiết diện của hình chóp S.ABCD khi cắt bởi mặt phẳng (MNC) là: A. Một hình bình hành. B. Một hình thang có hai cạnh bên không song song. C. Một tam giác. D. Một ngũ giác. + Trong không gian, cho hình chóp có đáy là đa giác n cạnh (n lớn hơn hoặc bằng 3). Khẳng định nào sau đây là sai? A. Số cạnh của hình chóp là 2n. B. Số đỉnh của hình chóp là 2n + 1. C. Số mặt của hình chóp bằng số đỉnh của nó. D. Số mặt của hình chóp là n + 1. + Một bộ có 25 thành viên. Số cách chọn một ban quản lí gồm 1 chủ tịch, 1 phó chủ tịch và 1 thư ký, trong đó không có ai kiêm nhiệm, là: A. 6900. B. 13800. C. Kết quả khác. D. 5600.

Nguồn: toanmath.com

Đọc Sách

Đề cuối kỳ 1 Toán 11 năm 2022 - 2023 trường THPT Tây Thạnh - TP HCM
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề kiểm tra đánh giá cuối học kỳ 1 môn Toán 11 năm học 2022 – 2023 trường THPT Tây Thạnh, thành phố Hồ Chí Minh; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề cuối kỳ 1 Toán 11 năm 2022 – 2023 trường THPT Tây Thạnh – TP HCM : + Có bao nhiêu số tự nhiên có 4 chữ số khác nhau biết chữ số hàng nghìn là số chẵn và chữ số hàng đơn vị là số lẻ? + Cần sắp xếp thứ tự 8 tiết mục văn nghệ gồm 4 tiết mục của lớp 12, 3 tiết mục của lớp 11 và 1 tiết mục của lớp 10 cho buổi biểu diễn văn nghệ của trường. Hỏi ban tổ chức có bao nhiêu cách sắp xếp khác nhau sao cho tiết mục của lớp 10 chỉ biểu diễn liền kề với tiết mục của lớp 11? + Có hai lớp 11A1 và 11A2 có sĩ số lần lượt là 45 và 50 học sinh. Số học sinh giỏi Văn và số học sinh giỏi Toán của mỗi lớp được cho trong bảng sau: Lớp Giỏi 11A1 11A2 Văn 25 25 Toán 30 30 Văn và Toán 20 15. Có một đoàn học sinh từ tỉnh H đến giao lưu với học sinh của trường. Hỏi nhà trường sẽ sắp xếp đoàn vào lớp nào để khả năng gặp được một học sinh giỏi ít nhất một môn Văn hoặc Toán là cao nhất? Giải thích.
Đề học kỳ 1 Toán 11 năm 2022 - 2023 trường THPT Thăng Long - TP HCM
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề kiểm tra cuối học kỳ 1 môn Toán 11 năm học 2022 – 2023 trường THPT Thăng Long, thành phố Hồ Chí Minh; đề thi có đáp án trắc nghiệm mã đề 101 – 102 – 103 – 104. Trích dẫn Đề học kỳ 1 Toán 11 năm 2022 – 2023 trường THPT Thăng Long – TP HCM : + Một nhóm gồm 7 học sinh khối 12, 6 học sinh khối 11 và 5 học sinh khối 10. Có bao nhiêu cách chọn ra 6 học sinh sao cho có đủ 3 khối và số học sinh khối 12 luôn nhiều hơn học sinh khối 10. + Có 6 quả cầu đỏ được đánh số từ 1 đến 6, 7 quả cầu xanh được đánh số từ 1 đến 7 và 5 quả cầu vàng được đánh số từ 1 đến 5. Lấy lần lượt mỗi màu một quả cầu. Có bao nhiêu cách để các quả cầu được lấy ra đều có số lẻ? + Cho tứ diện ABCD M N P lần lượt là trung điểm của AB BC CD. Thiết diện của tứ diên cắt bởi mặt phẳng MNP là: A. Hình bình hành B. Hình thang cân C. Hình chữ nhật D. Hình thoi.
Đề học kỳ 1 Toán 11 năm 2022 - 2023 trường TH Thực hành Sài Gòn - TP HCM
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề kiểm tra cuối học kỳ 1 môn Toán 11 năm học 2022 – 2023 trường Trung học Thực hành Sài Gòn, thành phố Hồ Chí Minh; đề thi có đáp án và thang điểm. Trích dẫn Đề học kỳ 1 Toán 11 năm 2022 – 2023 trường TH Thực hành Sài Gòn – TP HCM : + Từ các chữ số 1; 2; 3; 4; 5; 6 có thể lập được bao nhiêu số tự nhiên có 4 chữ số khác nhau sao cho chữ số hàng đơn vị gấp 5 lần chữ số hàng nghìn? + Có ba xạ thủ thi bắn vào mục tiêu, mỗi người bắn một viên đạn. Xác suất bắn trúng mục tiêu của xạ thủ thứ nhất, thứ hai và thứ ba lần lượt là 0,6; 0,7 và 0,8. Tính xác suất để có ít nhất một xạ thủ bắn trúng mục tiêu, biết rằng ba xạ thủ thi đấu độc lập với nhau. + Trong mặt phẳng tọa độ Oxy, ta lấy 2 điểm phân biệt thuộc góc phần tư thứ nhất; tương tự, ta lấy 3; 4; 5 điểm phân biệt lần lượt thuộc các góc phần tư thứ hai, thứ ba và thứ tư (các điểm không nằm trên các trục tọa độ). Với 14 điểm trên, ta chọn hai điểm bất kỳ. Tính xác suất để đoạn thẳng nối hai điểm đó cắt cả hai trục tọa độ.
Đề học kỳ 1 Toán 11 năm 2022 - 2023 trường THPT Phùng Khắc Khoan - Hà Nội
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề kiểm tra chất lượng cuối học kỳ 1 môn Toán 11 năm học 2022 – 2023 trường THPT Phùng Khắc Khoan, huyện Thạch Thất, thành phố Hà Nội; đề thi gồm 25 câu trắc nghiệm (05 điểm) và 06 câu tự luận (05 điểm), thời gian làm bài 90 phút (không tính thời gian phát đề), đề thi có đáp án và lời giải chi tiết mã đề 123 và mã đề 456. Trích dẫn đề học kỳ 1 Toán 11 năm 2022 – 2023 trường THPT Phùng Khắc Khoan – Hà Nội : + Để chứng minh một công thức thức P n n bằng phương pháp quy nạp toán học ta cần dùng bao nhiêu bước trong các bước sau: Bước 1. Chứng minh P n đúng với 1 n Bước 2. Giả sử P n đúng với 1 n k k ta chứng minh P n đúng với 1 n k Bước 3. Kết luận. + Cho ba góc của một tam giác lập thành một cấp số cộng, trong đó góc lớn nhất gấp đôi góc nhỏ nhất, hãy tìm góc có số đo nhỏ nhất. + Cho hình chóp S.ABCD đáy là hình vuông, tất cả các cạnh bằng a, gọi M, N lần lượt là trung điểm của SA và SC. Xác định và tính diện tích thiết diện tạo bởi mặt phẳng (BMN) với chóp đã cho theo a.