Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề định lí Ta-lét trong tam giác

Nội dung Chuyên đề định lí Ta-lét trong tam giác Bản PDF Chuyên đề định lí Ta-lét trong tam giác là một phần quan trọng của chương trình Hình học lớp 8. Tài liệu này bao gồm 11 trang, cung cấp kiến thức cần phải nắm vững, phân tích và hướng dẫn giải các dạng toán liên quan đến định lí Ta-lét trong tam giác.

Trong tài liệu này, chúng ta sẽ tìm hiểu về cách tính tỉ số hai đoạn thẳng và chia đoạn thẳng theo tỉ số đã cho. Chúng ta sẽ áp dụng định nghĩa tỉ số của hai đoạn thẳng, sử dụng kĩ thuật đại số hóa hình học và lập tỉ lệ thức giữa các đoạn thẳng tỉ lệ.

Ngoài ra, chúng ta cũng sẽ làm quen với cách tính độ dài đoạn thẳng sử dụng định lí Ta-lét, dựng đoạn thẳng tỉ lệ thứ tư khi biết độ dài của ba đoạn thẳng khác, và chứng minh các hệ thức hình học trong tam giác. Chúng ta cũng sẽ học cách vẽ thêm đường thẳng song song để tính tỉ số giữa hai đoạn thẳng.

Tài liệu cũng kèm theo các bài tập từ cơ bản đến nâng cao để học sinh tự rèn luyện và kiểm tra kiến thức của mình. Mỗi bài tập đều có đáp án và lời giải chi tiết, giúp học sinh hiểu rõ vấn đề và phát triển kỹ năng giải toán.

Tóm lại, tài liệu này hỗ trợ học sinh trong việc học tập chuyên đề định lí Ta-lét trong tam giác, giúp họ nắm vững kiến thức và áp dụng vào thực hành một cách hiệu quả.

Nguồn: sytu.vn

Đọc Sách

Chuyên đề chia đơn thức cho đơn thức, chia đa thức cho đơn thức
Tài liệu gồm 11 trang, tóm tắt lý thuyết trọng tâm cần đạt, phân dạng và hướng dẫn giải các dạng toán, tuyển chọn các bài tập từ cơ bản đến nâng cao chuyên đề chia đơn thức cho đơn thức, chia đa thức cho đơn thức, có đáp án và lời giải chi tiết, hỗ trợ học sinh trong quá trình học tập chương trình Đại số 8 chương 1: Phép nhân và phép chia các đa thức. A. TRỌNG TÂM CẦN ĐẠT 1. Chia đơn thức cho đơn thức. 2. Chia đa thức cho đơn thức. B. CÁC DẠNG BÀI TẬP Dạng 1 : Chia đơn thức cho đơn thức. Muốn chia đơn thức A cho đơn thức B ta làm như sau: + Bước 1: Chia hệ số của đơn thức A cho hệ số của đơn thức B. + Bước 2: Chia lũy thừa của từng biến trong A cho lũy thừa của cùng biến đó trong B. + Bước 3: Nhân các kết quả vừa tìm được với nhau. Dạng 2 : Chia đa thức cho đơn thức. Muốn chia đa thức A cho đơn thức B ta làm như sau: Chia mỗi hạng tử của A cho B rồi cộng các kết quả với nhau. C. PHIẾU BÀI TỰ LUYỆN
Chuyên đề phân tích đa thức thành nhân tử
Tài liệu gồm 32 trang, tóm tắt lý thuyết trọng tâm cần đạt, phân dạng và hướng dẫn giải các dạng toán, tuyển chọn các bài tập từ cơ bản đến nâng cao chuyên đề phân tích đa thức thành nhân tử, có đáp án và lời giải chi tiết, hỗ trợ học sinh trong quá trình học tập chương trình Đại số 8 chương 1: Phép nhân và phép chia các đa thức. A. LÝ THUYẾT 1. Phân tích đa thức thành nhân tử bằng phương pháp đặt nhân tử chung. 2. Phân tích đa thức thành nhân tử bằng phương pháp dùng hằng đẳng thức. 3. Phân tích đa thức thành nhân tử bằng phương pháp nhóm hạng tử. 4. Phân tích đa thức thành nhân tử bằng cách phối hợp nhiều phương pháp. B. CÁC DẠNG BÀI TẬP MINH HỌA CƠ BẢN + Dạng 1: Phân tích đa thức thành nhân tử bằng phương pháp đặt nhân tử chung. + Dạng 2: Phân tích đa thức thành nhân tử bằng phương pháp dùng hằng đẳng thức. + Dạng 3: Phân tích đa thức thành nhân tử bằng phương pháp nhóm hạng tử. + Dạng 4: Phân tích đa thức thành nhân tử bằng phương pháp đặt ẩn phụ. + Dạng 5: Phân tích đa thức thành nhân tử bằng cách phối hợp nhiều phương pháp. + Dạng 6: Tìm x với điều kiện cho trước. C. CÁC DẠNG BÀI TỔNG HỢP MINH HỌA NÂNG CAO D. PHIẾU BÀI TỰ LUYỆN
Chuyên đề những hằng đẳng thức đáng nhớ
Tài liệu gồm 19 trang, tóm tắt lý thuyết trọng tâm cần đạt, phân dạng và hướng dẫn giải các dạng toán, tuyển chọn các bài tập từ cơ bản đến nâng cao chuyên đề những hằng đẳng thức đáng nhớ, có đáp án và lời giải chi tiết, hỗ trợ học sinh trong quá trình học tập chương trình Đại số 8 chương 1: Phép nhân và phép chia các đa thức. A. LÝ THUYẾT 1. Bình phương của một tổng. 2. Bình phương của một hiệu. 3. Hiệu hai bình phương. 4. Lập phương của một tổng. 5. Lập phương của một hiệu. 6. Tổng hai lập phương. 7. Hiệu hai lập phương. Hệ quả : 1. Tổng hai bình phương. 2. Tổng hai lập phương. 3. Bình phương của tổng ba số hạng. 4. Lập phương của tổng ba số hạng. B. CÁC DẠNG BÀI TẬP MINH HỌA CƠ BẢN Dạng 1 : Biến đổi biểu thức. Áp dụng 7 hằng đẳng thức đáng nhớ để thực hiện biến đổi biểu thức. Dạng 2 : Tính giá trị biểu thức. Dạng bài toán này rất đa dạng ta có thể giải theo phương pháp cơ bản như sau: + Biến đổi biểu thức cho trước thành những biểu thức cần thiết sao cho phù hợp với biểu thức cần tính giá trị. + Áp dụng 7 hằng đẳng thức đáng nhớ để thực hiện biến đổi biểu thức cần tính giá trị về biểu thức có liên quan đến giá trị đề bài đã cho. + Thay vào biểu thức cần tính tìm được giá trị. Dạng 3 : Tìm giá trị lớn nhất, giá trị nhỏ nhất. + Giá trị lớn nhất của biểu thức A(x). Áp dụng bất đẳng thức ta biến đổi được về dạng: m – Q2(x) =< m (với m là hằng số), suy ra GTLN của A(x) là m. + Giá trị nhỏ nhất của biểu thức A(x). Áp dụng bất đẳng thức ta biến đổi được về dạng: n + Q2(x) >= n (với n là hằng số), suy ra GTNN của A(x) là n. C. CÁC DẠNG BÀI TẬP MINH HỌA NÂNG CAO TỔNG HỢP D. PHIẾU BÀI TỰ LUYỆN
Chuyên đề nhân đơn thức với đa thức, nhân đa thức với đa thức
Tài liệu gồm 13 trang, tóm tắt lý thuyết trọng tâm cần đạt, phân dạng và hướng dẫn giải các dạng toán, tuyển chọn các bài tập từ cơ bản đến nâng cao chuyên đề nhân đơn thức với đa thức, nhân đa thức với đa thức, có đáp án và lời giải chi tiết, hỗ trợ học sinh trong quá trình học tập chương trình Đại số 8 chương 1: Phép nhân và phép chia các đa thức. A. TRỌNG TÂM CẦN ĐẠT I. Lý thuyết 1. Nhân đơn thức với đa thức: Muốn nhân một đơn thức với một đa thức, ta nhân đơn thức đó với từng hạng tử của đa thức rồi cộng các tích với nhau. 2. Nhân đa thức với đa thức: Muốn nhân một đa thức với một đa thức, ta nhân mỗi hạng tử của đa thức này với từng hạng tử của đa thức kia rồi cộng các tích với nhau. II. Các dạng bài tập + Dạng 1: Thực hiện phép tính. Áp dụng quy tắc nhân đơn thức với đa thức và quy tắc nhân đa thức với đa thức để thực hiện phép tính. + Dạng 2: Tìm x với điều kiện cho trước. Áp dụng quy tắc nhân đơn thức với đa thức và quy tắc nhân đa thức với đa thức để tìm giá trị x. B. NÂNG CAO PHÁT TRIỂN TƯ DUY C. PHIẾU BÀI TỰ LUYỆN + Dạng 1: Rút gọn biểu thức. + Dạng 2: Tìm giá trị chưa biết. + Dạng 3: Tính giá trị biểu thức. + Dạng 4: Chứng minh giá trị biểu thức không phụ thuộc vào biến. + Dạng 5: Bài toán nâng cao.