Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tham khảo tuyển sinh 10 lớp 2024 môn Toán 2025 phòng GD ĐT Bình Tân TP HCM

Nội dung Đề tham khảo tuyển sinh 10 lớp 2024 môn Toán 2025 phòng GD ĐT Bình Tân TP HCM Bản PDF - Nội dung bài viết Đề tham khảo tuyển sinh lớp 10 môn Toán 2024 - 2025 phòng GD&ĐT Bình Tân TP HCM Đề tham khảo tuyển sinh lớp 10 môn Toán 2024 - 2025 phòng GD&ĐT Bình Tân TP HCM Sytu xin gửi đến các thầy cô giáo và các bạn học sinh lớp 9 đề tham khảo tuyển sinh vào lớp 10 môn Toán năm học 2024 - 2025 của phòng Giáo dục và Đào tạo quận Bình Tân, thành phố Hồ Chí Minh. Đề thi này đi kèm đáp án và lời giải chi tiết để giúp các bạn ôn tập hiệu quả. Bài thi gồm các câu hỏi thú vị như sau: + Trong một phòng thí nghiệm, đoàn tàu đồ chơi di chuyển theo hàm số s(t) = 6t - 9, với s là quãng đường đi được (mét) và t là thời gian (giây). Nếu trong thực tế đoàn tàu di chuyển 12 cm mất 2 giây và mỗi 10 giây nó đi được 52 cm. Hỏi sau 5 giây đoàn tàu di chuyển được bao nhiêu mét? Và cần bao nhiêu giây để đoàn tàu đi từ mẹ bé An đến chỗ bé, khi bé cách mẹ 2,5 mét? + Bạn Vy làm thêm ở tiệm café “Take away NT” và có hợp đồng lương tính theo ngày. Nếu bán đủ 50 ly café, Vy sẽ nhận được lương cơ bản 150,000 đồng. Mỗi ly bán vượt chỉ tiêu, bạn sẽ nhận thưởng 40% so với tiền lời một ly café. Biết hôm đầu tiên Vy làm thêm nhận được 222,000 đồng. Hỏi Vy đã bán bao nhiêu ly café, biết rằng lời một ly là 6,000 đồng? + Trái bóng Telstar có đường kính 22,3cm, với 32 múi da đen và trắng. Tính diện tích bề mặt của trái bóng. Và biết diện tích của mỗi múi da màu đen là 37 cm², mỗi múi da màu trắng là 55,9 cm², hỏi trái bóng có bao nhiêu múi da màu đen và màu trắng? Những câu hỏi này sẽ giúp các bạn luyện tập và nắm vững kiến thức Toán cần thiết cho kỳ thi tuyển sinh sắp tới. File WORD đã được chuẩn bị sẵn sàng cho quý thầy cô giáo để sử dụng trong việc giảng dạy và ôn tập cho học sinh.

Nguồn: sytu.vn

Đọc Sách

Đề tuyển sinh lớp 10 môn Toán (chung) năm 2023 - 2024 sở GDĐT Bà Rịa - Vũng Tàu
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán (chung) năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Bà Rịa – Vũng Tàu; kỳ thi được diễn ra vào 06/06/2023. Trích dẫn Đề tuyển sinh lớp 10 môn Toán (chung) năm 2023 – 2024 sở GD&ĐT Bà Rịa – Vũng Tàu : + Cho parabol (P): y = -x2 và đường thẳng (d): y = 3x – m (với m là tham số). a) Vẽ parabol (P). b) Tìm tất cả các giá trị của tham số m để (d) cắt (P) tại hai điểm phân biệt có hoành độ x1, x2 thỏa mãn 5(x1 + x2) = 1 – (x1x2)2. + Ông A có một mảnh đất hình chữ nhật, chiều dài hơn chiều rộng 15m. Ông A quyết định bán đi một phần mảnh đất đó. Mảnh đất còn lại sau khi bán vẫn là hình chữ nhật, nhưng so với lúc đầu thì chiều rộng đã giảm 5m, chiều dài không đổi và diện tích là 300m2. Tính chiều dài và chiều rộng của mảnh đất lúc đầu. + Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn (O)(AB < AC).Các đường cao BD, CE cắt nhau tại H. a) Chứng minh tứ giác ADHE nội tiếp. b) Đường thẳng ED cắt tiếp tuyến tại C của đường tròn (O) tại K và cắt đường tròn (O) tại M, N (M nằm giữa D và K). So sánh KNC với KCM và chứng minh KC2 = KM.KN. c) Kẻ đường kính AQ của đường tròn (O) cắt MN tại P. Chứng minh QM = QN. d) Gọi F, I lần lượt là giao điểm của hai tia AH, HQ với BC. Chứng minh SHDE/SABC = DE2/3BC2.
Đề tuyển sinh vào lớp 10 môn Toán năm 2023 - 2024 sở GDĐT Khánh Hòa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Khánh Hòa; kỳ thi được diễn ra vào thứ Hai ngày 05 tháng 06 năm 2023. Trích dẫn Đề tuyển sinh vào lớp 10 môn Toán năm 2023 – 2024 sở GD&ĐT Khánh Hòa : + Hưởng ứng phong trào “Ngày chủ nhật xanh” do Tỉnh đoàn phát động. Trường THCS X chọn 15 học sinh chia thành hai tổ tham gia trồng cây. Tổ I trồng được 30 cây, tổ II trồng được 36 cây. Biết rằng mỗi học sinh ở tổ I trồng được nhiều hơn mỗi học sinh ở tổ II là 1 cây. Hỏi mỗi tổ có bao nhiêu học sinh? + Gạch xây 3 lỗ (như hình vẽ) được làm bằng đất nung, thường được sử dụng trong các công trình có dạng hình hộp chữ nhật với chiều dài 220 mm, chiều rộng 105 mm, chiều cao 60 mm. Mỗi lỗ là hình trụ có trục song song với chiều cao viên gạch, đường kính đáy là 14 mm. Tính thể tích phần đất nung của một viên gạch. Biết V = abc 2 V r h lần lượt là công thức tính thể tích hình hộp chữ nhật và hình trụ (trong đó a, b, c là ba kích thước của hình hộp chữ nhật, r là bán kính đường tròn đáy, h là chiều cao hình trụ, lấy pi = 3,14). + Cho đường tròn (O) đường kính AB và điểm C thuộc đường tròn sao cho AC < BC (C khác A). Vẽ CH vuông góc với AB (H AB). a) Chứng minh ABC là tam giác vuông. Tính AC biết AB = 4cm, AH = 1cm. b) Trên tia đối của tia CA lấy điểm D sao cho CD = CA. Vẽ DE vuông góc với AB (E AB). Chứng minh BECD là tứ giác nội tiếp. c) Gọi I là giao điểm của DE và BC, K là điểm đối xứng của I qua C, tiếp tuyến của (O) tại C cắt KA tại M. Chứng minh KA là tiếp tuyến của (O) và BM đi qua trung điểm của CH.
Đề tuyển sinh vào lớp 10 môn Toán năm 2023 - 2024 sở GDĐT Bình Định
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Bình Định; kỳ thi được diễn ra vào thứ Ba ngày 06 tháng 06 năm 2023. Trích dẫn Đề tuyển sinh vào lớp 10 môn Toán năm 2023 – 2024 sở GD&ĐT Bình Định : + Trong hệ toạ độ Oxy, cho các đường thẳng (d): y = ax – 4 và (d1): y = -3x + 2. a) Biết đường thẳng (d) đi qua điểm A(-1;5). Tìm a. b) Tìm toạ độ giao điểm của (d1) với trục hoành, trục tung. Tính khoảng cách từ gốc tọa độ O đến đường thẳng (d1). + Trong kì thi tuyển sinh vào lớp 10 THPT, cả hai trường A và B có tổng số 380 thí sinh dự thi. Sau khi có kết quả, số thí sinh trúng tuyển của cả hai trường là 191 thí sinh. Theo thống kê thì trường A có tỉ lệ trúng tuyển là 55% tổng số thí sinh dự thi của trường A, trường B có tỉ lệ trúng tuyển là 45% tổng số thí sinh dự thi của trường B. Hỏi mỗi trường có bao nhiêu thí sinh dự thi? + Cho tam giác nhọn ABC nội tiếp đường tròn (O) có AB < AC, các đường cao BE, CF của tam giác ABC cắt nhau tại H, đường thẳng EF cắt đường thẳng BC tại K. 1. Chứng minh tứ giác BCEF nội tiếp. 2. Chứng minh hai tam giác KBF và KEC đồng dạng, từ đó suy ra KB.KC = KF.KE. 3. Đường thẳng AK cắt lại đường tròn (O) tại G khác A, chứng minh các điểm A, G, F, E, H cùng thuộc một đường tròn.
Đề tuyển sinh lớp 10 môn Toán năm 2023 - 2024 sở GDĐT Cao Bằng
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Cao Bằng; kỳ thi được diễn ra vào sáng thứ Ba ngày 06 tháng 06 năm 2023. Trích dẫn Đề tuyển sinh lớp 10 môn Toán năm 2023 – 2024 sở GD&ĐT Cao Bằng : + Một mảnh vườn hình chữ nhật có chu vi là 180 m. Nếu tăng chiều rộng mảnh vườn lên thêm 20 m và giảm chiều dài đi 20 m thì diện tích mảnh vườn không thay đổi. Tính chiều dài và chiều rộng mảnh vườn. + Cho tam giác ABC vuông tại A. Biết AC = 8cm; BC = 10cm. a) Tính độ dài cạnh AB. b) Kẻ đường cao AH. Tính độ dài đoạn thẳng HC. + Cho đường tròn (O) đường kính AB, trên đoạn thẳng OB lấy điểm C sao cho C không trùng với O và B. Gọi H là trung điểm của AC, kẻ dây cung DE của đường tròn (O) vuông góc với AC tại H. Gọi K là giao điểm của BD với đường tròn đường kính BC. a) Chứng minh tứ giác DHCK là tứ giác nội tiếp. b) Chứng minh ba điểm E, C, K thẳng hàng.