Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tổng ôn 50 dạng toán thi tốt nghiệp THPT năm 2022 môn Toán

Tài liệu gồm 310 trang, tuyển tập 50 dạng toán tổng ôn thi tốt nghiệp Trung học Phổ thông môn Toán năm học 2021 – 2022. Chương 1 . 50 Dạng Toán THPT Quốc Gia 1. Bài 1. PHÂN TÍCH CHI TIẾT ĐỀ MINH HỌA BỘ GIÁO DỤC 2022 1. Câu 1. Đề minh hoạ BGD 2022 1. + Dạng 1. Xác định mô-đun, phần thực, phần ảo, số phức liên hợp của số phức1. Câu 2. Đề minh hoạ BGD 2022 2. + Dạng 2. Phương trình mặt cầu 3. Câu 3. Đề minh hoạ BGD 2022 3. + Dạng 3. Tìm điểm trên đồ thị hàm số 4. Câu 4. Đề minh hoạ BGD 2022 4. + Dạng 4. Tổ hợp-Chỉnh hợp-Hoán vị 4. Câu 5. Đề minh hoạ BGD 2022 6. + Dạng 5. Tìm nguyên hàm bằng định nghĩa, tính chất, bảng nguyên hàm 6. Câu 6. Đề minh hoạ BGD 2022 7. + Dạng 6. Tìm cực trị của hàm số dựa vào bảng biến thiên 7. Câu 7. Đề minh hoạ BGD 2022 8. + Dạng 7. Bất phương trình mũ cơ bản 8. Câu 8. Đề minh hoạ BGD 2022 8. + Dạng 8. Tính thể tích khối chóp 9. Câu 9. Đề minh hoạ BGD 2022 9. + Dạng 9. Hàm số lũy thừa 9. Câu 10. Đề minh hoạ BGD 2022 10. + Dạng 10. Phương trình mũ-Phương trình logarit cơ bản 10. Câu 11. Đề minh hoạ BGD 2022 11. + Dạng 11. Tính tích phân bằng định nghĩa và tính chất tích phân 11. Câu 12. Đề minh hoạ BGD 2022 12. + Dạng 12. Xác định các yếu tố cơ bản số phức qua các phép toán 12. Câu 13. Đề minh hoạ BGD 2022 13. + Dạng 13. Tìm VTPT của mặt phẳng 13. Câu 14. Đề minh hoạ BGD 2022 14. + Dạng 14. Tìm tọa độ điểm-Tọa độ vec-tơ liên quan đến hệ tọa độ Oxyz 14. Câu 15. Đề minh hoạ BGD 2022 15. + Dạng 15. Biểu diễn hình học của số phức 15. Câu 16. Đề minh hoạ BGD 2022 15. + Dạng 16. Tiệm cận của đồ thị hàm số 16. Câu 17. Đề minh hoạ BGD 2022 17. + Dạng 17. Biến đổi, rút gọn biểu thức có chứa logarit 18. Câu 18. Đề minh hoạ BGD 2022 18. + Dạng 18. Nhận dạng đồ thị hay BBT của hàm số 19. Câu 19. Đề minh hoạ BGD 2022 20. + Dạng 19. Xác định các yếu tố cơ bản của đường thẳng 20. Câu 20. Đề minh hoạ BGD 2022 22. + Dạng 20. Tổ hợp-Chỉnh hợp-Hoán vị 22. Câu 21. Đề minh hoạ BGD 2022 23. + Dạng 21. Tính thể tích khối lăng trụ 24. Câu 22. Đề minh hoạ BGD 2022 24. + Dạng 22. Tính đạo hàm hàm số mũ-logarit 24. Câu 23. Đề minh hoạ BGD 2022 25. + Dạng 23. Xét sự đồng biến-nghịch biến của hàm số dựa vào bảng biến thiên26. Câu 24. Đề minh hoạ BGD 2022 26. + Dạng 24. Câu hỏi lý thuyết về khối nón-khối trụ 26. Câu 25. Đề minh hoạ BGD 2022 28. + Dạng 25. Tính tích phân bằng tích chất của tích phân 28. Câu 26. Đề minh hoạ BGD 2022 29. + Dạng 26. Cấp số cộng-Cấp số nhân 30. Câu 27. Đề minh hoạ BGD 2022 30. + Dạng 27. Tính nguyên hàm bằng định nghĩa, tính chất và bảng nguyên hàm31. Câu 28. Đề minh hoạ BGD 2022 31. + Dạng 28. Tìm cực trị của hàm số dựa vào bảng biến thiên 32. Câu 29. Đề minh hoạ BGD 2022 32. + Dạng 29. Tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = f(x) trên đoạn [a; b] 33. Câu 30. Đề minh hoạ BGD 2022 33. + Dạng 30. Xét sự đồng biến , nghịch biến của hàm số cho bởi công thức 34. Câu 31. Đề minh hoạ BGD 2022 34. + Dạng 31. Tính giá trị biểu thức có chứa logarit 35. Câu 32. Đề minh hoạ BGD 2022 35. + Dạng 32. Tính góc giữa đường thẳng và mặt phẳng 36. Câu 33. Đề minh hoạ BGD 2022 38. + Dạng 33. Tính tích phân bằng tính chất tích phân 39. Câu 34. Đề minh hoạ BGD 2022 39. + Dạng 34. Viết phương trình mặt phẳng 40. Câu 35. Đề minh hoạ BGD 2022 42. + Dạng 35. Thực hiện các phép toán về số phức: Cộng-trừ-nhân-chia 42. Câu 36. Đề minh hoạ BGD 2022 42. + Dạng 36. Khoảng cách từ một điểm đến mặt phẳng 43. Câu 37. Đề minh hoạ BGD 2022 44. + Dạng 37. Tính xác suất của biến cố 45. Câu 38. Đề minh hoạ BGD 2022 45. + Dạng 38. Viết phương trình đường thẳng 45. Câu 39. Đề minh hoạ BGD 2022 46. + Dạng 39. Bất phương trình mũ – Logarit- BPT tích 47. Câu 40. Đề minh hoạ BGD 2022 47. + Dạng 40. Sự tương giao của hai đồ thị hàm số 48. Câu 41. Đề minh hoạ BGD 2022 49. + Dạng 41. Tìm nguyên hàm của hàm số thỏa điều kiện cho trước 49. Câu 42. Đề minh hoạ BGD 2022 49. + Dạng 42. Thể tích khối chóp-khối lăng trụ liên quan đến khoảng cách, góc.50. Câu 43. Đề minh hoạ BGD 2022 51. + Dạng 43. Xác định các yếu tố cơ bản của số phức qua các phép toán hay bài toán qui về phương trình, hệ phương trình nghiệm thực – PT bậc 2 52. Câu 44. Đề minh hoạ BGD 2022 52. + Dạng 44. Min- Max của số phức 54. + Dạng 45. Sử dụng biến đổi đại số kết hợp với các bất đẳng thức quen thuộc để đánh giá 55. + Dạng 46. Sử dụng biểu diễn hình học của số phức đưa về các bài toán cực trị quen thuộc 56. Câu 45. Đề minh hoạ BGD 2022 57. + Dạng 47. Tính diện tích hình phẳng 59. Câu 46. Đề minh hoạ BGD 2022 59. + Dạng 48. Viết phương trình đường thẳng 60. Câu 47. Đề minh hoạ BGD 2022 61. + Dạng 49. Tính thể tích của khối nón, khối trụ liên quan đến thiết diện của nón hay trụ 62. Câu 48. Đề minh hoạ BGD 2022 64. + Dạng 50. Bất phương trình mũ-loagrit- Phương pháp đặt ẩn phụ- phương pháp hàm số 65. Câu 49. Đề minh hoạ BGD 2022 65. + Dạng 51. Bài toán liên quan đến mặt cầu-mặt phẳng-đường thẳng 66. Câu 50. Đề minh hoạ BGD 2022 67. + Dạng 52 68. Phần I Tổng ôn các câu hỏi mức độ TB – Khá. Chương 2. Hình không gian Oxyz 71. Bài 1. Hệ trục tọa độ, góc, khoảng cách & vị trí tương đối 71. A Kiến thức cần nhớ 71. Bài 2. Mặt cầu và phương trình mặt cầu 82. A Phương trình mặt cầu 83. B Các dạng viết phương trình mặt cầu thường gặp 83. Bài 3. Mặt phẳng và phương trình mặt phẳng 90. A Mặt phẳng 90. B Phương trình mặt phẳng 90. Bài 4. Đường thẳng và phương trình đường thẳng 99. A Đường thẳng 99. B Phương trình đường thẳng 99. Bảng đáp án 110. Chương 3. Nguyên hàm, tích phân và ứng dụng 112. Bài 1. Tính chất nguyên hàm và tích phân, bảng nguyên hàm 112. Bài 2. Diện tích & thể tích tròn xoay 127. Bài 3. Thể tích theo mặt cắt S(x) ⇒ V = Z b a S(x) dx 132. Bảng đáp án 137. Chương 4. Số phức 138. Bảng đáp án 145. Chương 5. Cấp số cộng – Cấp số nhân – Tổ hợp – Xác suất 146. Bài 1. Cấp số cộng và cấp số nhân 146. Bài 2. Hoán vị – Chỉnh hợp – Tổ hợp 149. Bài 3. Xác suất 151. Bảng đáp án 155. Chương 6. Góc & khoảng cách 157. Bài 1. Góc giữa đường thẳng và mặt phẳng 157. Bài 2. Góc giữa hai mặt phẳng 159. Bài 3. Góc giữa hai đường thẳng 161. Bài 4. Khoảng cách từ một điểm đến mặt phẳng 162. Bài 5. Khoảng cách giữa hai đường thẳng chéo nhau 164. Bảng đáp án 168. Chương 7. Hàm số và các vấn đề liên quan đến hàm số 169. Bài 1. Đơn điệu và cực trị 169. Bài 2. Giá trị lớn nhất và nhỏ nhất 177. Bài 3. Tiệm cận 188. Bài 4. Nhận dạng đồ thị hàm số 191. Bài 5. Sự tương giao 194. Bài 6. Phương trình tiếp tuyến 195. Bảng đáp án 196. Chương 8. Mũ & Lôgarit 198. Bài 1. Công thức mũ & lôgarit và bài toán biến đổi 198. Bài 2. Tập xác định và đạo hàm của hàm số mũ, hàm số logarit 203. Bài 3. Tập xác định và đạo hàm 208. Bài 4. Phương trình và bất phương trình mũ, lôgarit 210. A Kiến thức cần nhớ 210. B Bài tập luyện tập 210. Bảng đáp án 217. Chương 9. Thể tích khối đa diện 218. Bài 1. Thể tích khối chóp 218. Bài 2. Thể tích lăng trụ, lập phương, hộp chữu nhật 221. Bảng đáp án 225. Chương 10. Nón – trụ – cầu 226. Bài 1. Khối nón 226. Bài 2. Khối trụ 228. Bài 3. Khối cầu 232. Bảng đáp án 233. Phần II Tổng ôn mức vận dụng – vận dụng cao. Chương 39. Bất phương trình mũ – Logarit 236. A Bài tập mẫu 236. B Bài tập tương tự và phát triển 236. Bảng đáp án 239. Chương 40. Hàm số 240. A Bài tập mẫu 240. B Bài tập tương tự và phát triển 241. Bảng đáp án 249. Chương 41. Nguyên hàm – Tích phân hàm ẩn 250. A Bài tập mẫu 250. B Bài tập tương tự và phát triển 250. Bảng đáp án 253. Chương 42. Thể tích khối đa diện 254. A Bài tập mẫu 254. B Bài tập tương tự và phát triển 254. Bảng đáp án 260. Chương 43. Số phức 261. A Bài tập mẫu 261. B Bài tập tương tự và phát triển 261. Bảng đáp án 264. Chương 44. Cực trị số phức 265. A Bài tập mẫu 265. B Bài tập tương tự và phát triển 266. Bảng đáp án 268. Chương 45. Ứng dụng tích phân 269. A Bài tập mẫu 269. B Bài tập tương tự và phát triển 270. Bảng đáp án 275. Chương 46. Toạ độ không gian Oxyz 276. A Bài tập mẫu 276. B Bài tập tương tự và phát triển 276. Bảng đáp án 282. Chương 47. Khối tròn xoay 283. A Bài tập mẫu 283. B Bài tập tương tự và phát triển 283. Bảng đáp án 287. Chương 48. Mũ – Logarit 288. A Bài tập mẫu 288. B Bài tập tương tự và phát triển 288. Bảng đáp án 291. Chương 49. Toạ độ không gian Oxyz 292. A Bài tập mẫu 292. B Bài tập tương tự và phát triển 292. Bảng đáp án 297. Chương 50. Max – min hàm số 298. A Bài tập mẫu 298. B Bài tập tương tự và phát triển 299. Bảng đáp án 302.

Nguồn: toanmath.com

Đọc Sách

Tài liệu ôn thi THPT môn Toán giai đoạn 1 Lê Văn Đoàn
Nội dung Tài liệu ôn thi THPT môn Toán giai đoạn 1 Lê Văn Đoàn Bản PDF - Nội dung bài viết Tài liệu ôn thi THPT môn Toán giai đoạn 1 Lê Văn Đoàn Tài liệu ôn thi THPT môn Toán giai đoạn 1 Lê Văn Đoàn Tài liệu ôn thi THPT môn Toán giai đoạn 1 của thầy Lê Văn Đoàn bao gồm 83 trang được biên soạn bởi nhóm Toán gồm các thầy: Ths. Lê Văn Đoàn, Ths. Trương Huy Hoàng, Ths. Nguyễn Tiến Hà, Bùi Sỹ Khanh, Nguyễn Đức Nam, và Đỗ Minh Tiến. Tài liệu này tập trung vào các chuyên đề quan trọng như hàm số và các vấn đề liên quan, thể tích khối đa diện, giúp học sinh khối 12 ôn thi THPT môn Toán giai đoạn giữa học kỳ 1. Tài liệu bao gồm 481 bài tập trắc nghiệm (có đáp án) từ các chuyên đề như sau: Chuyên đề 1. HÀM SỐ VÀ CÁC VẤN ĐỀ LIÊN QUAN Bài toán lớp 1: Đơn điệu, cực trị, giá trị lớn nhất – giá trị nhỏ nhất, tiệm cận và tương giao khi đề bài cho bảng biến thiên hoặc đồ thị f(x) hoặc f'(x). Bài toán lớp 2: Đơn điệu, cực trị, giá trị lớn nhất – giá trị nhỏ nhất, tiệm cận và tương giao khi đề bài cho hàm số f(x) hoặc f'(x) cụ thể. Bài toán lớp 3: Bài toán chứa tham số. ... Chuyên đề 2. THỂ TÍCH KHỐI ĐA DIỆN Bài toán lớp 1: Thể tích khối chóp, khối lập phương, khối hộp chữ nhật, khối lăng trụ. Bài toán lớp 2: Bài toán cực trị thể tích. Bài toán lớp 3: Tỉ số thể tích. ... Tài liệu này cung cấp những bài tập đa dạng và phong phú, giúp học sinh hiểu rõ hơn về các chuyên đề Toán quan trọng và chuẩn bị tốt cho kỳ thi THPT sắp tới.
Các chuyên đề Giải tích ôn thi tốt nghiệp THPT Lư Sĩ Pháp
Nội dung Các chuyên đề Giải tích ôn thi tốt nghiệp THPT Lư Sĩ Pháp Bản PDF - Nội dung bài viết Các chuyên đề Giải tích ôn thi tốt nghiệp THPT Lư Sĩ Pháp Các chuyên đề Giải tích ôn thi tốt nghiệp THPT Lư Sĩ Pháp Tài liệu này bao gồm 118 trang và đã được biên soạn bởi thầy Lư Sĩ Pháp. Đây là tập 1 trong bộ sách "Toán ôn thi tốt nghiệp", tập trung vào các chuyên đề về Giải tích. Nội dung của tài liệu được thiết kế để bám sát chương trình của Bộ Giáo dục và Đào tạo, mang lại cho học sinh sự chuẩn bị tốt nhất cho kỳ thi tốt nghiệp THPT. Trên các trang của tài liệu, bạn sẽ tìm thấy hệ thống bài tập trắc nghiệm Giải tích có đáp án, giúp bạn kiểm tra và củng cố kiến thức một cách hiệu quả. Các chuyên đề trong tài liệu bao gồm: 1. Khảo sát hàm số (trang 01 – trang 36) 2. Lũy thừa – mũ – lôgarit (trang 37 – trang 59) 3. Nguyên hàm – tích phân (trang 60 – trang 83) 4. Số phức (trang 84 – trang 99) 5. Cấp số cộng – cấp số nhân (trang 100 – trang 104) 6. Tổ hợp – xác suất (trang 105 – trang 114) Với cấu trúc rõ ràng và dễ hiểu, tài liệu này sẽ giúp bạn nắm vững kiến thức cơ bản và nâng cao về Giải tích để tự tin đối mặt với bài thi tốt nghiệp THPT. Hãy cùng thầy Lư Sĩ Pháp trải nghiệm bộ sách hữu ích này và đạt thành tích tốt nhất trong kỳ thi sắp tới!
Tài liệu ôn thi THPT Quốc gia môn Toán Hồ Xuân Trọng
Nội dung Tài liệu ôn thi THPT Quốc gia môn Toán Hồ Xuân Trọng Bản PDF - Nội dung bài viết Tài liệu ôn thi THPT Quốc gia môn Toán Hồ Xuân TrọngPHẦN I: GIẢI TÍCHPHẦN II: HÌNH HỌCPHẦN III: ĐẠI SỐ & GIẢI TÍCHPHẦN IV: HÌNH HỌC Tài liệu ôn thi THPT Quốc gia môn Toán Hồ Xuân Trọng Tài liệu ôn thi THPT Quốc gia môn Toán do thầy giáo Hồ Xuân Trọng biên soạn gồm tổng cộng 335 trang. Được tuyển chọn kỹ lưỡng từ các câu hỏi và bài tập trắc nghiệm các chủ đề quan trọng trong chương trình ôn thi THPT Quốc gia môn Toán. Tài liệu được chia thành các phần sau: PHẦN I: GIẢI TÍCH CHƯƠNG 1: Khảo sát hàm số và ứng dụng - Sự đồng biến, nghịch biến của hàm số - Tìm điều kiện để hàm số đơn điệu trên một khoảng cho trước - Tính đơn điệu của hàm hợp - Cực trị của hàm số - Tìm cực trị của hàm số hợp - Giá trị lớn nhất và nhỏ nhất của hàm số - Tiệm cận của đồ thị hàm số - Nhận dạng hàm số từ đồ thị, bảng biến thiên - Phát hiện tính chất của hàm số dựa và đồ thị của hàm số CHƯƠNG 2: Hàm số lũy thừa, mũ, và logarit - Lôgarit - Phương trình và bất phương trình logarit, mũ - Ứng dụng phương pháp hàm số giải phương trình mũ và logarit CHƯƠNG 3: Nguyên hàm, tích phân và ứng dụng - Nguyên hàm cơ bản - Tính chất của tích phân - Ứng dụng của tích phân CHƯƠNG 4: Số phức - Khái niệm số phức và các phép toán - Biểu diễn hình học của số phức PHẦN II: HÌNH HỌC CHƯƠNG 5: Thể tích khối đa diện - Tính thể tích khối chóp và lăng trụ CHƯƠNG 6: Mặt nón - Mặt trụ - Mặt cầu - Hình nón, khối nón - Khối trụ CHƯƠNG 7: Phương pháp tọa độ trong không gian - Tọa độ của điểm, véc-tơ - Phương trình mặt phẳng và đường thẳng - Phương trình mặt cầu PHẦN III: ĐẠI SỐ & GIẢI TÍCH CHƯƠNG 8: Tổ hợp - Xác suất - Công thức khai triển nhị thức Newton - Các quy tắc đếm - Xác suất CHƯƠNG 9: Dãy số - Cấp số cộng và cấp số nhân - Cấp số cộng, cấp số nhân PHẦN IV: HÌNH HỌC CHƯƠNG 10 - Góc, khoảng cách Đây là tài liệu hữu ích giúp học sinh ôn thi THPT Quốc gia môn Toán một cách hiệu quả và nâng cao kiến thức của mình. Mong rằng tài liệu sẽ giúp đỡ các bạn trong quá trình ôn tập và đạt kết quả cao trong kỳ thi sắp tới.
Sử dụng chủ yếu suy luận trong giải toán trắc nghiệm Trần Tuấn Anh
Nội dung Sử dụng chủ yếu suy luận trong giải toán trắc nghiệm Trần Tuấn Anh Bản PDF - Nội dung bài viết Sử dụng suy luận trong giải toán trắc nghiệm Sử dụng suy luận trong giải toán trắc nghiệm Tài liệu "Sử dụng chủ yếu suy luận trong giải toán trắc nghiệm" được biên soạn bởi thầy Trần Tuấn Anh, là nguồn hướng dẫn quan trọng giúp học sinh ôn thi tốt nghiệp Trung học Phổ thông Quốc gia môn Toán. Tài liệu này không chỉ giúp học sinh ôn tập mà còn hướng dẫn cách sử dụng suy luận để giải các bài toán trắc nghiệm một cách logic và nhanh chóng. Các bài toán đặc biệt có thể được giải nhanh chóng nhờ những suy luận toán học, giúp tiết kiệm thời gian trong quá trình giải quyết. Việc đọc tài liệu này cũng giúp học sinh hiểu rõ về việc kết hợp các phương pháp giải toán. Đôi khi, một bài toán cần sự linh hoạt và kết hợp nhiều phương pháp để chọn được đáp án đúng. Việc vận dụng các phương pháp một cách linh hoạt và tổng lực là điều cần thiết khi giải toán trắc nghiệm. Tài liệu này không chỉ là một nguồn hướng dẫn, mà còn giúp học sinh phát triển khả năng tư duy logic, sáng tạo và linh hoạt trong giải quyết bài toán. Hãy tận dụng mỗi phương pháp một cách hữu ích và áp dụng chúng vào từng dạng bài toán khác nhau để có kết quả tốt nhất.