Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tổng ôn 50 dạng toán thi tốt nghiệp THPT năm 2022 môn Toán

Tài liệu gồm 310 trang, tuyển tập 50 dạng toán tổng ôn thi tốt nghiệp Trung học Phổ thông môn Toán năm học 2021 – 2022. Chương 1 . 50 Dạng Toán THPT Quốc Gia 1. Bài 1. PHÂN TÍCH CHI TIẾT ĐỀ MINH HỌA BỘ GIÁO DỤC 2022 1. Câu 1. Đề minh hoạ BGD 2022 1. + Dạng 1. Xác định mô-đun, phần thực, phần ảo, số phức liên hợp của số phức1. Câu 2. Đề minh hoạ BGD 2022 2. + Dạng 2. Phương trình mặt cầu 3. Câu 3. Đề minh hoạ BGD 2022 3. + Dạng 3. Tìm điểm trên đồ thị hàm số 4. Câu 4. Đề minh hoạ BGD 2022 4. + Dạng 4. Tổ hợp-Chỉnh hợp-Hoán vị 4. Câu 5. Đề minh hoạ BGD 2022 6. + Dạng 5. Tìm nguyên hàm bằng định nghĩa, tính chất, bảng nguyên hàm 6. Câu 6. Đề minh hoạ BGD 2022 7. + Dạng 6. Tìm cực trị của hàm số dựa vào bảng biến thiên 7. Câu 7. Đề minh hoạ BGD 2022 8. + Dạng 7. Bất phương trình mũ cơ bản 8. Câu 8. Đề minh hoạ BGD 2022 8. + Dạng 8. Tính thể tích khối chóp 9. Câu 9. Đề minh hoạ BGD 2022 9. + Dạng 9. Hàm số lũy thừa 9. Câu 10. Đề minh hoạ BGD 2022 10. + Dạng 10. Phương trình mũ-Phương trình logarit cơ bản 10. Câu 11. Đề minh hoạ BGD 2022 11. + Dạng 11. Tính tích phân bằng định nghĩa và tính chất tích phân 11. Câu 12. Đề minh hoạ BGD 2022 12. + Dạng 12. Xác định các yếu tố cơ bản số phức qua các phép toán 12. Câu 13. Đề minh hoạ BGD 2022 13. + Dạng 13. Tìm VTPT của mặt phẳng 13. Câu 14. Đề minh hoạ BGD 2022 14. + Dạng 14. Tìm tọa độ điểm-Tọa độ vec-tơ liên quan đến hệ tọa độ Oxyz 14. Câu 15. Đề minh hoạ BGD 2022 15. + Dạng 15. Biểu diễn hình học của số phức 15. Câu 16. Đề minh hoạ BGD 2022 15. + Dạng 16. Tiệm cận của đồ thị hàm số 16. Câu 17. Đề minh hoạ BGD 2022 17. + Dạng 17. Biến đổi, rút gọn biểu thức có chứa logarit 18. Câu 18. Đề minh hoạ BGD 2022 18. + Dạng 18. Nhận dạng đồ thị hay BBT của hàm số 19. Câu 19. Đề minh hoạ BGD 2022 20. + Dạng 19. Xác định các yếu tố cơ bản của đường thẳng 20. Câu 20. Đề minh hoạ BGD 2022 22. + Dạng 20. Tổ hợp-Chỉnh hợp-Hoán vị 22. Câu 21. Đề minh hoạ BGD 2022 23. + Dạng 21. Tính thể tích khối lăng trụ 24. Câu 22. Đề minh hoạ BGD 2022 24. + Dạng 22. Tính đạo hàm hàm số mũ-logarit 24. Câu 23. Đề minh hoạ BGD 2022 25. + Dạng 23. Xét sự đồng biến-nghịch biến của hàm số dựa vào bảng biến thiên26. Câu 24. Đề minh hoạ BGD 2022 26. + Dạng 24. Câu hỏi lý thuyết về khối nón-khối trụ 26. Câu 25. Đề minh hoạ BGD 2022 28. + Dạng 25. Tính tích phân bằng tích chất của tích phân 28. Câu 26. Đề minh hoạ BGD 2022 29. + Dạng 26. Cấp số cộng-Cấp số nhân 30. Câu 27. Đề minh hoạ BGD 2022 30. + Dạng 27. Tính nguyên hàm bằng định nghĩa, tính chất và bảng nguyên hàm31. Câu 28. Đề minh hoạ BGD 2022 31. + Dạng 28. Tìm cực trị của hàm số dựa vào bảng biến thiên 32. Câu 29. Đề minh hoạ BGD 2022 32. + Dạng 29. Tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = f(x) trên đoạn [a; b] 33. Câu 30. Đề minh hoạ BGD 2022 33. + Dạng 30. Xét sự đồng biến , nghịch biến của hàm số cho bởi công thức 34. Câu 31. Đề minh hoạ BGD 2022 34. + Dạng 31. Tính giá trị biểu thức có chứa logarit 35. Câu 32. Đề minh hoạ BGD 2022 35. + Dạng 32. Tính góc giữa đường thẳng và mặt phẳng 36. Câu 33. Đề minh hoạ BGD 2022 38. + Dạng 33. Tính tích phân bằng tính chất tích phân 39. Câu 34. Đề minh hoạ BGD 2022 39. + Dạng 34. Viết phương trình mặt phẳng 40. Câu 35. Đề minh hoạ BGD 2022 42. + Dạng 35. Thực hiện các phép toán về số phức: Cộng-trừ-nhân-chia 42. Câu 36. Đề minh hoạ BGD 2022 42. + Dạng 36. Khoảng cách từ một điểm đến mặt phẳng 43. Câu 37. Đề minh hoạ BGD 2022 44. + Dạng 37. Tính xác suất của biến cố 45. Câu 38. Đề minh hoạ BGD 2022 45. + Dạng 38. Viết phương trình đường thẳng 45. Câu 39. Đề minh hoạ BGD 2022 46. + Dạng 39. Bất phương trình mũ – Logarit- BPT tích 47. Câu 40. Đề minh hoạ BGD 2022 47. + Dạng 40. Sự tương giao của hai đồ thị hàm số 48. Câu 41. Đề minh hoạ BGD 2022 49. + Dạng 41. Tìm nguyên hàm của hàm số thỏa điều kiện cho trước 49. Câu 42. Đề minh hoạ BGD 2022 49. + Dạng 42. Thể tích khối chóp-khối lăng trụ liên quan đến khoảng cách, góc.50. Câu 43. Đề minh hoạ BGD 2022 51. + Dạng 43. Xác định các yếu tố cơ bản của số phức qua các phép toán hay bài toán qui về phương trình, hệ phương trình nghiệm thực – PT bậc 2 52. Câu 44. Đề minh hoạ BGD 2022 52. + Dạng 44. Min- Max của số phức 54. + Dạng 45. Sử dụng biến đổi đại số kết hợp với các bất đẳng thức quen thuộc để đánh giá 55. + Dạng 46. Sử dụng biểu diễn hình học của số phức đưa về các bài toán cực trị quen thuộc 56. Câu 45. Đề minh hoạ BGD 2022 57. + Dạng 47. Tính diện tích hình phẳng 59. Câu 46. Đề minh hoạ BGD 2022 59. + Dạng 48. Viết phương trình đường thẳng 60. Câu 47. Đề minh hoạ BGD 2022 61. + Dạng 49. Tính thể tích của khối nón, khối trụ liên quan đến thiết diện của nón hay trụ 62. Câu 48. Đề minh hoạ BGD 2022 64. + Dạng 50. Bất phương trình mũ-loagrit- Phương pháp đặt ẩn phụ- phương pháp hàm số 65. Câu 49. Đề minh hoạ BGD 2022 65. + Dạng 51. Bài toán liên quan đến mặt cầu-mặt phẳng-đường thẳng 66. Câu 50. Đề minh hoạ BGD 2022 67. + Dạng 52 68. Phần I Tổng ôn các câu hỏi mức độ TB – Khá. Chương 2. Hình không gian Oxyz 71. Bài 1. Hệ trục tọa độ, góc, khoảng cách & vị trí tương đối 71. A Kiến thức cần nhớ 71. Bài 2. Mặt cầu và phương trình mặt cầu 82. A Phương trình mặt cầu 83. B Các dạng viết phương trình mặt cầu thường gặp 83. Bài 3. Mặt phẳng và phương trình mặt phẳng 90. A Mặt phẳng 90. B Phương trình mặt phẳng 90. Bài 4. Đường thẳng và phương trình đường thẳng 99. A Đường thẳng 99. B Phương trình đường thẳng 99. Bảng đáp án 110. Chương 3. Nguyên hàm, tích phân và ứng dụng 112. Bài 1. Tính chất nguyên hàm và tích phân, bảng nguyên hàm 112. Bài 2. Diện tích & thể tích tròn xoay 127. Bài 3. Thể tích theo mặt cắt S(x) ⇒ V = Z b a S(x) dx 132. Bảng đáp án 137. Chương 4. Số phức 138. Bảng đáp án 145. Chương 5. Cấp số cộng – Cấp số nhân – Tổ hợp – Xác suất 146. Bài 1. Cấp số cộng và cấp số nhân 146. Bài 2. Hoán vị – Chỉnh hợp – Tổ hợp 149. Bài 3. Xác suất 151. Bảng đáp án 155. Chương 6. Góc & khoảng cách 157. Bài 1. Góc giữa đường thẳng và mặt phẳng 157. Bài 2. Góc giữa hai mặt phẳng 159. Bài 3. Góc giữa hai đường thẳng 161. Bài 4. Khoảng cách từ một điểm đến mặt phẳng 162. Bài 5. Khoảng cách giữa hai đường thẳng chéo nhau 164. Bảng đáp án 168. Chương 7. Hàm số và các vấn đề liên quan đến hàm số 169. Bài 1. Đơn điệu và cực trị 169. Bài 2. Giá trị lớn nhất và nhỏ nhất 177. Bài 3. Tiệm cận 188. Bài 4. Nhận dạng đồ thị hàm số 191. Bài 5. Sự tương giao 194. Bài 6. Phương trình tiếp tuyến 195. Bảng đáp án 196. Chương 8. Mũ & Lôgarit 198. Bài 1. Công thức mũ & lôgarit và bài toán biến đổi 198. Bài 2. Tập xác định và đạo hàm của hàm số mũ, hàm số logarit 203. Bài 3. Tập xác định và đạo hàm 208. Bài 4. Phương trình và bất phương trình mũ, lôgarit 210. A Kiến thức cần nhớ 210. B Bài tập luyện tập 210. Bảng đáp án 217. Chương 9. Thể tích khối đa diện 218. Bài 1. Thể tích khối chóp 218. Bài 2. Thể tích lăng trụ, lập phương, hộp chữu nhật 221. Bảng đáp án 225. Chương 10. Nón – trụ – cầu 226. Bài 1. Khối nón 226. Bài 2. Khối trụ 228. Bài 3. Khối cầu 232. Bảng đáp án 233. Phần II Tổng ôn mức vận dụng – vận dụng cao. Chương 39. Bất phương trình mũ – Logarit 236. A Bài tập mẫu 236. B Bài tập tương tự và phát triển 236. Bảng đáp án 239. Chương 40. Hàm số 240. A Bài tập mẫu 240. B Bài tập tương tự và phát triển 241. Bảng đáp án 249. Chương 41. Nguyên hàm – Tích phân hàm ẩn 250. A Bài tập mẫu 250. B Bài tập tương tự và phát triển 250. Bảng đáp án 253. Chương 42. Thể tích khối đa diện 254. A Bài tập mẫu 254. B Bài tập tương tự và phát triển 254. Bảng đáp án 260. Chương 43. Số phức 261. A Bài tập mẫu 261. B Bài tập tương tự và phát triển 261. Bảng đáp án 264. Chương 44. Cực trị số phức 265. A Bài tập mẫu 265. B Bài tập tương tự và phát triển 266. Bảng đáp án 268. Chương 45. Ứng dụng tích phân 269. A Bài tập mẫu 269. B Bài tập tương tự và phát triển 270. Bảng đáp án 275. Chương 46. Toạ độ không gian Oxyz 276. A Bài tập mẫu 276. B Bài tập tương tự và phát triển 276. Bảng đáp án 282. Chương 47. Khối tròn xoay 283. A Bài tập mẫu 283. B Bài tập tương tự và phát triển 283. Bảng đáp án 287. Chương 48. Mũ – Logarit 288. A Bài tập mẫu 288. B Bài tập tương tự và phát triển 288. Bảng đáp án 291. Chương 49. Toạ độ không gian Oxyz 292. A Bài tập mẫu 292. B Bài tập tương tự và phát triển 292. Bảng đáp án 297. Chương 50. Max – min hàm số 298. A Bài tập mẫu 298. B Bài tập tương tự và phát triển 299. Bảng đáp án 302.

Nguồn: toanmath.com

Đọc Sách

50 chuyên đề phát triển đề tham khảo tốt nghiệp THPT 2023 môn Toán
Tài liệu gồm 481 trang, được biên soạn bởi thầy giáo Vũ Ngọc Huy (trường THPT chuyên Lê Quý Đôn, tỉnh Ninh Thuận), tuyển tập 50 chuyên đề phát triển đề tham khảo tốt nghiệp THPT 2023 môn Toán của Bộ Giáo dục và Đào tạo, có đầy đủ đáp án và lời giải chi tiết. MỤC LỤC : Phần 1. 50 CÂU PHÁT TRIỂN ĐỀ MINH HỌA 2023. 1 Điểm biểu diễn số phức. 2 Hàm số logarit. 3 Đạo hàm hàm lũy thừa – Hàm mũ – logarit. 4 Phương trình mũ – Bất phương trình mũ. 5 Cấp số cộng, cấp số nhân. 6 Phương trình mặt phẳng. 7 Bài toán liên quan đến giao điểm giữa các đồ thị. 8 Tính chất tích phân. 9 Nhận dạng đồ thị hàm số. 10 Phương trình mặt cầu. 11 Góc giữa hai mặt phẳng. 12 Các phép toán cơ bản của số phức. 13 Tính thể tích khối lăng trụ đứng. 14 Thể tích khối chóp. 15 Định nghĩa, tính chất, vị trí tương đối liên quan đến mặt cầu. 16 Số phức và các phép toán. 17 Hình nón, hình trụ. 18 Phương trình đường thẳng. 19 Tìm cực trị của hàm số biết bảng biến thiên hoặc đồ thị. 20 Đường tiệm cận. 21 Phương trình và bất phương trình logarit. 22 Phép đếm – Hoán vị – Chỉnh hợp – Tổ hợp. 23 Nguyên hàm. 24 Tích phân. 25 Nguyên hàm. 26 Xét tính đơn điệu dựa vào bảng biến thiên của hàm số. 27 Tìm cực trị của hàm số dựa vào đồ thị. 28 Lôgarit. 29 Ứng dụng tích phân tính thể tích vật thể tròn xoay. 30 Góc giữa hai mặt phẳng trong không gian. 31 Sự tương giao của hai đồ thị. 32 Xét tính đơn điệu của hàm số. 33 Xác suất. 34 Phương trình mũ. 35 Phép đếm. 36 Viết phương trình đường thẳng. 37 Điểm đối xứng, hình chiếu của một điểm. 38 Khoảng cách từ một điểm tới mặt phẳng. 39 Phương trình mũ và phương trình logarit. 40 Tích phân hàm ẩn. 41 Cực trị. 42 Cực trị của số phức. 43 Phép đếm. 44 Diện tích hình phẳng. 45 Phương trình với hệ số phức. 46 Phương trình mặt phẳng và khoảng cách. 47 Phép đếm. 48 Hình nón – Hình Trụ. 49 Tương giao đường thẳng, mặt phẳng, mặt cầu, cực trị. 50 Tính đơn điệu của hàm số liên kết. Trong mỗi dạng toán đều bao gồm các nội dung: A Kiến thức cần nhớ – B Bài tập mẫu – C Bài tập tương tự và phát triển – D Bảng đáp án.
Phát triển 16 dạng toán trọng tâm đề tham khảo TN THPT 2023 môn Toán
Tài liệu gồm 545 trang, được biên soạn bởi thầy giáo Phan Nhật Linh, phát triển 16 dạng toán trọng tâm, mức độ vận dụng – vận dụng cao (VD – VDC), từ câu 35 đến câu 50 trong đề tham khảo kỳ thi tốt nghiệp THPT năm 2023 môn Toán của Bộ Giáo dục và Đào tạo. + Dạng 1 Tập Hợp Điểm Biểu Diễn Số Phức. + Dạng 2 Viết Phương Trình Đường Thẳng Đi Qua Hai Điểm. + Dạng 3 Tìm Tọa Độ Điểm Liên Quan Đến Mặt Phẳng. + Dạng 4 Khoảng Cách Trong Không Gian. + Dạng 5 Bất Phương Trình Logarit. + Dạng 6 Tính Tích Phân. + Dạng 7 Cực Trị Của Hàm Số. + Dạng 8 Cực Trị Số Phức. + Dạng 9 Thể Tích Khối Đa Diện Khi Biết Yếu Tố Khoảng Cách. + Dạng 10 Ứng Dụng Tích Phân Tính Diện Tích Hình Phẳng. + Dạng 11 Phương Trình Bậc Hai Số Phức. + Dạng 12 Khoảng Cách Trong Hệ Tọa Độ Oxyz. + Dạng 13 Tìm Cặp Số Nguyên Liên Quan Đến Bất Phương Trình Logarit. + Dạng 14 Tính Khoảng Cách Liên Quan Đến Mặt Nón. + Dạng 15 Cực Trị Trong Không Gian Oxyz. + Dạng 16 Tính Đơn Điệu Hàm Số Chứa Giá Trị Tuyệt Đối. Trong mỗi dạng toán đều bao gồm các phần: Kiến Thức Cần Nhớ; Bài Tập Trong Đề Minh Họa; Bài Tập Tương Tự Và Phát Triển; có đáp án và lời giải chi tiết.
Chuyên đề phát triển VD - VDC đề tham khảo thi TN THPT 2023 môn Toán
Tài liệu gồm 529 trang, được biên soạn bởi thầy giáo Đặng Việt Đông, tuyển tập các chuyên đề phát triển bài toán mức độ vận dụng – vận dụng cao (VD – VDC) trong đề tham khảo kỳ thi tốt nghiệp THPT năm 2023 môn Toán, có đáp án và lời giải chi tiết. Trích dẫn Chuyên đề phát triển VD – VDC đề tham khảo thi TN THPT 2023 môn Toán : + Có bao nhiêu giá trị nguyên của tham số m để hàm số 4 2 y x x mx 6 có ba điểm cực trị? Lời giải: Chọn B. Ta có: 3 y x x m 4 12. Xét phương trình 3 y x x m 0 4 12 0 1. Để hàm số có ba điểm cực trị thì phương trình 1 phải có 3 nghiệm phân biệt. Ta có: 3 1 4 12 m x x. Xét hàm số 3 g x x x 4 12 có 2 g x x 12 12. Cho 2 g x x 12 12 0 1. Bảng biến thiên của g x. Dựa vào bảng biến thiên ta thấy, phương trình 1 có 3 nghiệm phân biệt khi 8 8 m. Do m 6 5. Vậy có 15 giá trị nguyên của tham số m thỏa yêu cầu đề bài. + Gọi H là hình chiếu của S lên đáy I J K là hình chiếu của S lên AC CB BA. Dễ dàng chứng minh được góc giữa các mặt bên và đáy là các góc SIH SJH SKH và các tam giác vuông SHI SHJ SHK bằng nhau nên HI HJ HK. Do đó H là tâm đường tròn nội tiếp của tam giác ABC. Ta có: 0 AC AB a BC tan 60 3 2a. Nên diện tích và nửa chu vi của tam giác ABC lần lượt là: 2 2 a a AB AC BC S AB. Suy ra bán kính đường tròn nội tiếp của tam giác ABC là: 2 a S r HK p. Đường cao của khối chóp SABC là 3 3 tan 60 2 a SH HK. Vậy thể tích khối chóp đã cho là? + Cho hàm số 1 3 2 2 4 3 y f x x x mx. Có bao nhiêu giá trị nguyên của tham số m thuộc đoạn 2023 2023 để hàm số y f x 4 nghịch biến trên khoảng 03? Lời giải: Ta có: y f x f x. Đặt t x 4 với x t x 1. Do đó, hàm số y f x 4 nghịch biến trên khoảng 03 khi và chỉ khi hàm số y f t nghịch biến trên khoảng 4 1. Mặt khác y f t là hàm số chẵn, có đồ thị đối xứng qua trục tung. Suy ra hàm số y f t nghịch biến trên khoảng 4 1 khi hàm số y f t đồng biến trên 14 tương ứng với hàm số y f t đồng biến trên 14. Do m và m 2023 2023 nên có 2023 giá trị nguyên của m thỏa mãn bài toán.
Phân tích đề thi tham khảo tốt nghiệp THPT năm 2023 môn Toán
Tài liệu gồm 87 trang, được biên soạn bởi quý thầy, cô giáo trường THPT An Phước, tỉnh Ninh Thuận: Trần Ngọc Hùng, Ngụy Như Thái, Quảng Đại Hạn, Quảng Đại Phước, Đàng Xuân Phi, Quảng Đại Mưa, Nguyễn Văn Hồng, hướng dẫn phân tích chi tiết đề thi tham khảo tốt nghiệp THPT năm 2023 môn Toán. Dạng 1: Bài toán chỉ sử dụng P hoặc C hoặc A. Dạng 2: Tính xác suất bằng định nghĩa. Dạng 3: Tìm hạng tử trong cấp số nhân. Dạng 4: Xác định góc giữa hai mặt phẳng, đường và mặt. Dạng 5: Khoảng cách từ một điểm đến một mặt phẳng. Dạng 6: Xét tính đơn điệu dựa vào bảng biến thiên, đồ thị. Dạng 7: Tìm cực trị dựa vào BBT, đồ thị. Dạng 8: Bài toán xác định các đường tiệm cận của hàm số (không chứa tham số) hoặc biết BBT, đồ thị. Dạng 9: Nhận dạng đồ thị, bảng biến thiên. Dạng 10: Sự tương giao của hai đồ thị (liên quan đến tọa độ giao điểm). Dạng 11: Xét tính đơn điệu của hàm số cho bởi công thức. Dạng 12: Biện luận số giao điểm dựa vào đồ thị, bảng biến thiên. Dạng 13: Biện luận số giao điểm dựa vào đồ thị, bảng biến thiên. Dạng 14: Câu hỏi lý thuyết. Dạng 15: Đạo hàm hàm số lũy thừa. Dạng 16: Tính đạo hàm hàm số mũ, hàm số lô-ga-rít. Dạng 17: Bất phương trình cơ bản. Dạng 18: Biến đổi, rút gọn, biểu diễn biểu thức chứa lô-ga-rít. Dạng 19: Phương pháp đặt ẩn phụ. Dạng 20: Phương pháp đưa về cùng cơ số. Dạng 21: Phương pháp đưa về cùng cơ số. Dạng 22: Phương pháp hàm số, đánh giá. Dạng 23: Định nghĩa, tính chất và tích phân cơ bản. Dạng 24: Định nghĩa, tính chất và nguyên hàm cơ bản. Dạng 25: Định nghĩa, tính chất và tích phân cơ bản. Dạng 26: Thể tích giới hạn bởi các đồ thị (tròn xoay). Dạng 27: Phương pháp đổi biến số. Dạng 28: Diện tích hình phẳng được giới hạn bởi các đồ thị. Dạng 29: Xác định các yếu tố cơ bản của số phức. Dạng 30: Biểu diễn hình học cơ bản của số phức. Dạng 31: Xác định các yếu tố cơ bản của số phức qua các phép toán. Dạng 32: Bài toán tập hợp điểm. Dạng 33: Định lí Viet và ứng dụng. Dạng 34: Phương pháp đại số. Dạng 35: Tính thể tích các khối đa diện. Dạng 36: Các bài toán khác (góc, khoảng cách) liên quan đến thể tích khối đa diện. Dạng 37: Diện tích xung quanh, diện tích toàn phần, độ dài đường sinh, chiều cao, bán kính đáy, thiết diện. Dạng 38: Diện tích xung quanh, diện tích toàn phần, độ dài đường sinh, chiều cao, bán kính đáy, thiết diện. Dạng 39: Phương trình mặt cầu (xác định tâm, bán kính, viết PT mặt cầu đơn giản, vị trí tương đối hai mặt cầu, điểm đến mặt cầu, đơn giản). Dạng 40: Xác định VTPT. Dạng 41: Góc. Dạng 42: Tìm tọa độ điểm, véc-tơ liên quan đến hệ trục Oxyz. Dạng 43: Phương trình mặt cầu (xác định tâm, bán kính, viết PT mặt cầu đơn giản, vị trí tương đối hai mặt cầu, điểm đến mặt cầu, đơn giản). Dạng 44: Viết phương trình đường thẳng. Dạng 45: Tìm tọa độ điểm liên quan đến đường thẳng. Dạng 46: Các bài toán cực trị. Dạng 47: Vị trí tương đối giữa hai đường thẳng, giữa đường thẳng và mặt phẳng.