Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Số phức (dành cho học sinh Yếu - TB) - Đặng Việt Đông

giới thiệu đến bạn đọc tài liệu chuyên đề số phức dành cho học sinh Yếu – TB, tài liệu được biên soạn bởi thầy Đặng Việt Đông gồm 31 trang, tóm tắt lý thuyết cơ bản số phức và tuyển chọn các bài tập trắc nghiệm số phức ở mức độ nhận biết – thông hiểu, giúp học sinh nắm được cách giải một số dạng toán cơ bản về số phức, các bài tập trong tài liệu được phân tích và giải chi tiết. Khái quát số phức (dành cho học sinh Yếu – TB) – Đặng Việt Đông: Bài 1 : SỐ PHỨC VÀ CÁC PHÉP TOÁN SỐ PHỨC 1. Khái niệm số phức. + Số phức (dạng đại số) z = a + bi (a, b thuộc R), trong đó a là phần thực, b là phần ảo, i là đơn vị ảo, i^2 = -1. + Tập hợp số phức kí hiệu C. + z là số thực khi và chỉ khi phần ảo của z bằng 0. + z là số ảo (hay còn gọi là số thuần ảo khi và chỉ khi phần thực bằng 0. + Số 0 vừa là số thực vừa là số ảo. 2. Hai số phức bằng nhau. + Hai số phức z1 = a + bi (a, b thuộc R) và z2 = c + di (c, d thuộc R) và bằng nhau khi phần thực và phần ảo của chúng tương đương bằng nhau. 3. Số phức liên hợp. + Số phức liên hợp của z = a + bi (a, b thuộc R) là z¯ = a – bi. 4. Môđun của số phức. + Độ dài của vectơ OM được gọi là môđun của số phức z và kí hiệu là |z|. + Một số tính chất môđun của số phức. 5. Phép cộng trừ nhân chia số phức. [ads] Bài 2 : PHƯƠNG TRÌNH BẬC HAI VỚI HỆ SỐ THỰC 1. Căn bậc hai của số thực âm. + Cho số z, nếu có số phức z1 sao cho z1^2 = z thì ta nói z1 là một căn bậc hai của z. + Mọi số phức z khác 0 đều có hai căn bậc hai. + Căn bậc hai của số thực âm z là ±i√|z|. 2. Phương trình bậc hai với hệ số thực. Cho phương trình bậc hai ax^2 + bx + c = 0 (a, b, c thuộc R, a khác 0). Xét biệt số Δ = b^2 – 4ac của phương trình. Ta thấy: + Khi Δ = 0 phương trình có một nghiệm thực x = -b/2a. + Khi Δ > 0 phương trình có hai nghiệm thực phân biệt x = (-b ± √Δ)/2a. + Khi Δ < 0 phương trình có hai nghiệm phức x = (-b ± i√|Δ|)/2a. Bài 3 : TẬP HỢP ĐIỂM BIỂU DIỄN SỐ PHỨC 1. Biểu diễn hình học số phức. + Số phức z = a + bi (a, b thuộc R) được biểu diễn bởi điểm M(a;b) hay vectơ u = (a;b) trong mặt phẳng phức với hệ tọa độ Oxy. 2. Một số tập hợp điểm biểu diễn số phức z thường gặp. + ax + by + c = 0: tập hợp điểm là đường thẳng. + x = 0: tập hợp điểm là trục tung Oy, y = 0: tập hợp điểm là trục hoành Ox. + (x – a)^2 + (y – b)^2 < R^2: tập hợp điểm là hình tròn tâm I(a;b), bán kính R. + (x – a)^2 + (y – b)^2 = R^2, x^2 + y^2 – 2ax – 2by + c = 0: tập hợp điểm là đường tròn có tâm I(a;b) bán kính R. + x > 0: tập hơp điểm là miền bên phải trục tung, y < 0: tập hợp điểm là miền phía dưới trục hoành, x < 0: tập hợp điểm là miền bên trái trục tung, y > 0: tập hợp điểm là phía trên trục hoành. + y = ax^2 + bx + c: tập hợp điểm là đường Parabol. + x^2/a^2 + y^2/b^2 = 1: tập hợp điểm là đường Elip. + x^2/a^2 – y^2/b^2 = 1: tập hợp điểm là đường Hyperbol.

Nguồn: toanmath.com

Đọc Sách

Bài giảng giá trị lớn nhất và giá trị nhỏ nhất của môđun số phức
Tài liệu gồm 20 trang, trình bày lí thuyết trọng tâm và hướng dẫn giải các dạng bài tập chuyên đề giá trị lớn nhất và giá trị nhỏ nhất của môđun số phức, giúp học sinh lớp 12 tham khảo khi học chương trình Giải tích 12 chương 4: Số phức. Mục tiêu : Kiến thức : + Nắm vững các định nghĩa về số phức và các phép toán cộng, trừ hai số phức; phép nhân số phức; phép chia hai số phức. + Nắm vững các bài toán cực trị cơ bản về liên quan giữa các yếu tố: Điểm, đường tròn, đường thẳng, đoạn thẳng, tia, miền đa giác, hình tròn, …. + Nắm vững các bất đẳng thức cơ bản liên quan đến môđun số phức và bất đẳng thức Cauchy – Schwarz. Kĩ năng : + Biết thực hiện thành thạo các định nghĩa, các phép toán trên số phức và vận dụng vào giải được một số bài toán liên quan. + Biết thực hiện thành thạo việc chuyển đổi ngôn ngữ số phức sang ngôn ngữ hình học. + Giải thành thạo các bài toán cực trị cơ bản về liên quan giữa các yếu tố: Điểm, đường tròn, đường thẳng, đoạn thẳng, tia, miền đa giác, hình tròn, …. + Vận dụng linh hoạt các bất đẳng thức liên quan đến môđun số phức và bất đẳng thức Cauchy – Schwarz vào giải các bài toán max, min môđun số phức. I. LÍ THUYẾT TRỌNG TÂM II. CÁC DẠNG BÀI TẬP Dạng 1 : Phương pháp hình học. + Bước 1: Chuyển đổi ngôn ngữ bài toán số phức sang ngôn ngữ hình học. + Bước 2: Sử dụng một số kết quả đã biết để giải bài toán hình học. + Bước 3: Kết luận cho bài toán số phức. Dạng 2 : Phương pháp đại số.
Bài giảng phương trình bậc hai với hệ số thực
Tài liệu gồm 15 trang, trình bày lí thuyết trọng tâm và hướng dẫn giải các dạng bài tập chuyên đề phương trình bậc hai với hệ số thực, giúp học sinh lớp 12 tham khảo khi học chương trình Giải tích 12 chương 4: Số phức. Mục tiêu : Kiến thức : + Nắm vững cách giải phương trình bậc hai với hệ số thực trên tập số phức. Kĩ năng : + Giải được phương trình bậc hai với hệ số thực trên tập số phức và vận dụng vào giải được một số bài toán liên quan. + Vận dụng định lý Vi-ét vào giải một số bài toán chứa nhiều biểu thức đối xứng đối với hai nghiệm của phương trình. + Biết cách giải các phương trình quy về phương trình bậc hai đối với hệ số thực. + Vận dụng các kiến thức đã học để giải quyết một số bài toán tổng hợp. I. LÍ THUYẾT TRỌNG TÂM II. CÁC DẠNG BÀI TẬP Dạng 1 : Giải phương trình. Tính toán biểu thức nghiệm. Dạng 2 : Định lí Vi-ét và ứng dụng. Dạng 3 : Phương trình quy về phương trình bậc hai.
Bài giảng các phép toán trên tập hợp số phức
Tài liệu gồm 22 trang, trình bày lí thuyết trọng tâm và hướng dẫn giải các dạng bài tập chuyên đề các phép toán trên tập hợp số phức, giúp học sinh lớp 12 tham khảo khi học chương trình Giải tích 12 chương 4: Số phức. Mục tiêu : Kiến thức : + Nhận biết được các phép toán cộng, trừ hai số phức; phép nhân số phức; phép chia hai số phức. Kĩ năng : + Thành thạo các phép toán cộng, trừ hai số phức và vận dụng vào giải được một số bài toán liên quan. + Thành thạo phép nhân hai số phức và vận dụng vào giải được một số bài toán liên quan. + Thành thạo phép toán chia hai số phức và vận dụng vào giải được một số bài toán liên quan. + Vận dụng các phép toán đã học để giải quyết một số bài toán tổng hợp. I. LÍ THUYẾT TRỌNG TÂM II. CÁC DẠNG BÀI TẬP Dạng 1 : Thực hiện các phép toán của số phức. Dạng 2 : Xác định các yếu tố của số phức qua các phép toán. – Bài toán 1. Tìm phần thực, phần ảo của số phức. – Bài toán 2. Tìm số phức liên hợp, tính môđun số phức. – Bài toán 3. Bài toán liên quan đến điểm biểu diễn số phức. Dạng 3 : Tìm số phức thỏa mãn điều kiện cho trước. Dạng 4 : Bài toán tập hợp điểm biểu diễn số phức.
Bài giảng khái niệm số phức
Tài liệu gồm 12 trang, trình bày lí thuyết trọng tâm và hướng dẫn giải các dạng bài tập chuyên đề khái niệm số phức, giúp học sinh lớp 12 tham khảo khi học chương trình Giải tích 12 chương 4: Số phức. Mục tiêu : Kiến thức : + Nắm vững khái niệm số phức, số phức liên hợp, hai số phức bằng nhau. + Trình bày được công thức tính môđun số phức. + Mô tả được biểu diễn hình học của một số phức. Kĩ năng : + Biết tìm phần thực, phần ảo của một số phức. + Biết tìm số phức liên hợp của số phức z = a + bi. + Tính được môđun của một số phức. + Biết biểu diễn hình học của một số phức. + Cho điểm M(a;b) là điểm biểu diễn của số phức z = a + bi, biết tìm phần thực, phần ảo; biết tính môđun của z. + Biết tìm điều kiện để hai số phức bằng nhau. + Biết cách tìm tập hợp điểm biểu diễn cho số phức z thỏa mãn tính chất nào đó. I. LÍ THUYẾT TRỌNG TÂM II. CÁC DẠNG BÀI TẬP Dạng 1 : Xác định các yếu tố liên quan đến khái niệm số phức. – Bài toán 1. Tìm phần thực, phần ảo của số phức. – Bài toán 2. Tìm số phức liên hợp, môđun của số phức, điều kiện để hai số phức bằng nhau. Dạng 2 : Tìm điểm biểu diễn hình học của số phức.