Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề chọn đội tuyển lớp 7 môn Toán năm 2022 2023 hệ thống GD Archimedes School Hà Nội

Nội dung Đề chọn đội tuyển lớp 7 môn Toán năm 2022 2023 hệ thống GD Archimedes School Hà Nội Bản PDF - Nội dung bài viết Đề thi chọn đội tuyển Toán lớp 7 năm 2022 - 2023 Archimedes School Hà Nội Đề thi chọn đội tuyển Toán lớp 7 năm 2022 - 2023 Archimedes School Hà Nội Xin chào quý thầy cô và các em học sinh lớp 7! Đây là đề thi chọn đội tuyển học sinh giỏi môn Toán lớp 7 năm học 2022 - 2023 của hệ thống giáo dục Archimedes School, thành phố Hà Nội. Đề thi bao gồm 01 trang với 07 bài toán dạng tự luận, thời gian làm bài thi là 135 phút. Một trong những bài toán trong đề thi là: Có 64 học sinh đứng trên một lưới ô vuông kích thước 8 x 8, mỗi ô vuông có đúng một học sinh đứng trên đó và toàn bộ 64 học sinh đều có chiều cao khác nhau. Biết rằng An là người cao nhất trong những người thấp nhất ở mỗi hàng và Bình là người thấp nhất trong những người cao nhất ở mỗi cột, hãy so sánh chiều cao của An và Bình. Bên cạnh đó, đề thi còn đề cập đến bài toán khác như tính giá trị của biểu thức S với số nguyên dương n, và thách thức của Thầy Cẩn khi muốn viết các số vào các đỉnh của một khối lập phương sao cho tổng hai số trên hai đầu mút của mỗi cạnh là đôi một khác nhau. Đây là cơ hội để các em học sinh lớp 7 thể hiện khả năng giải toán, logic và sự sáng tạo của mình. Chúc các em thành công trong việc giải quyết các bài toán thú vị này!

Nguồn: sytu.vn

Đọc Sách

Đề học sinh giỏi huyện Toán 7 năm 2014 - 2015 phòng GDĐT Nho Quan - Ninh Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề học sinh giỏi huyện Toán 7 năm 2014 – 2015 phòng GD&ĐT Nho Quan – Ninh Bình; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề học sinh giỏi huyện Toán 7 năm 2014 – 2015 phòng GD&ĐT Nho Quan – Ninh Bình : + Tìm các số a, b, c không âm thỏa mãn đồng thời ba điều kiện: a + 3c = 2014; a + 2b = 2015; tổng (a + b + c) đạt giá trị lớn nhất. + Trên bảng viết 99 số: 1, 2, 3, 4 … 99. Cứ mỗi lần người ta xóa đi hai số bất kì rồi lại viết giá trị của tổng hai số vừa xóa vào bảng. Cuối cùng trên bảng chỉ còn lại một số, giả sử đó là số k. Hãy tìm k và chứng tỏ k không phải là số chính phương. + Cho m, n, p là các số nguyên dương thỏa mãn: m2 = n2 + p2. Chứng minh rằng: tích m.n.p chia hết cho 15.
Đề học sinh giỏi huyện Toán 7 năm 2013 - 2014 phòng GDĐT Nho Quan - Ninh Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề học sinh giỏi huyện Toán 7 năm 2013 – 2014 phòng GD&ĐT Nho Quan – Ninh Bình; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề học sinh giỏi huyện Toán 7 năm 2013 – 2014 phòng GD&ĐT Nho Quan – Ninh Bình : + Cho n là số tự nhiên có hai chữ số. Tìm n biết n 4 và 2n đều là các số chính phương. + Cho xAy = 600 có tia phân giác Az. Từ điểm B trên Ax kẻ BH vuông góc với Ay tại H, kẻ BK vuông góc với Az và Bt song song với Ay, Bt cắt Az tại C. Từ C kẻ CM vuông góc với Ay tại M. 1) Chứng minh K là trung điểm của AC. 2) Chứng minh KMC là tam giác đều. 3) Cho BK = 2cm. Tính các cạnh của AKM. + Đa thức f(x) = ax2 + bx + c có a, b, c là các số nguyên và a 0. Biết với mọi giá trị nguyên của x thì f(x) luôn chia hết cho 23. Chứng minh rằng các số a, b, c đều chia hết cho 23.
Đề học sinh giỏi huyện Toán 7 năm 2009 - 2010 phòng GDĐT Phú Thiện - Gia Lai
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề học sinh giỏi huyện Toán 7 năm 2009 – 2010 phòng GD&ĐT Phú Thiện – Gia Lai; đề thi có đáp số + lời giải + thang điểm. Trích dẫn đề học sinh giỏi huyện Toán 7 năm 2009 – 2010 phòng GD&ĐT Phú Thiện – Gia Lai : + Cho tam giác ABC vuông tại A; K là trung điểm của BC. Trên tia đối của tia KA lấy D sao cho KD = KA. a. Chứng minh: CD // AB. b. Gọi H là trung điểm của AC; BH cắt AD tại M; DH cắt BC tại N. Chứng minh rằng: ABH = CDH. c. Chứng minh: HMN cân. + Chứng minh rằng số có dạng abcabc luôn chia hết cho 11. + Cho tỉ lệ thức d c b a. Chứng minh rằng: (a + 2c)(b + d) = (a + c)(b + 2d).