Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Phân dạng và bài tập biểu thức đại số Toán 8 Chân Trời Sáng Tạo

Tài liệu gồm 272 trang, được tổng hợp bởi thầy giáo Nguyễn Bỉnh Khôi, bao gồm phân dạng và bài tập chủ đề biểu thức đại số trong chương trình môn Toán 8 sách Chân Trời Sáng Tạo. Chương 1 . ĐA THỨC NHIỀU BIẾN 2. Bài 1 . ĐƠN THỨC VÀ ĐA THỨC NHIỀU BIẾN 2. A Trọng tâm kiến thức 2. 1. Đơn thức nhiều biến và đơn thức thu gọn 2. 2. Đơn thức đồng dạng 2. 3. Đa thức nhiều biến. Đa thức thu gọn 2. 4. Bậc của đa thức 3. B Các dạng bài tập và phương pháp giải 3. + Dạng 1. Xác định đơn thức, đa thức 3. + Dạng 2. Tính tích các đơn thức 4. + Dạng 3. Xác định bậc của đơn thức 4. + Dạng 4. Tính giá trị của đơn thức 6. + Dạng 5. Nhận biết đơn thức đồng dạng 7. + Dạng 6. Cộng trừ các đơn thức đồng dạng 8. + Dạng 7. Tìm đơn thức thỏa mãn đẳng thức 9. + Dạng 8. Thu gọn đa thức 9. + Dạng 9. Tìm bậc của đa thức 10. + Dạng 10. Vận dụng 11. C Bài tập vận dụng 12. Bài 2 . CÁC PHÉP TOÁN VỚI ĐA THỨC NHIỀU BIẾN 18. A Trọng tâm kiến thức 18. 1. Phép cộng, trừ hai đa thức nhiều biến 18. 2. Phép nhân, chia hai đa thức nhiều biến 18. B Các dạng bài tập và phương pháp giải 19. + Dạng 1. Cộng trừ, nhân chia hai đa thức 19. + Dạng 2. Tìm đa thức thỏa mãn đẳng thức 26. + Dạng 3. Bài toán liên quan đến chia hết 27. + Dạng 4. Rút gọn và tính giá trị của biểu thức 29. + Dạng 5. Tìm giá trị của biến x 32. + Dạng 6. Chứng minh giá trị của một biểu thức không phụ thuộc vào một biến nào đó 34. + Dạng 7. Chứng minh đẳng thức 35. + Dạng 8. Vận dụng 37. C Bài tập vận dụng 38. LUYỆN TẬP CHUNG 1 51. A Đơn thức 51. B Đa thức. Cộng trừ đa thức 57. C Phép nhân đa thức 63. D Phép chia đa thức 67. E Vận dụng 70. Bài 3 . NHỮNG HẰNG ĐẲNG THỨC ĐÁNG NHỚ 74. A Trọng tâm kiến thức 74. B Các dạng bài tập và phương pháp giải 74. + Dạng 1. Vận dụng hằng đẳng thức để tính 74. + Dạng 2. Rút gọn và tính giá trị của biểu thức 76. + Dạng 3. Chứng minh giá trị của biểu thức không phụ thuộc vào các biến 78. + Dạng 4. Chứng minh đẳng thức 78. + Dạng 5. Tìm x thỏa mãn đẳng thức 79. + Dạng 6. Chứng minh chia hết 80. + Dạng 7. Chứng minh giá trị của một biểu thức luôn luôn dương (hay âm) với mọi giá trị của biến 80. + Dạng 8. Tìm giá trị nhỏ nhất, giá trị lớn nhất của biểu thức P (x) = ax2 + bx + c 81. + Dạng 9. Vận dụng 82. C Bài tập vận dụng 83. LUYỆN TẬP CHUNG 2 95. A Những hằng đẳng thức đáng nhớ 95. Bài 4 . VẬN DỤNG HẰNG ĐẲNG THỨC VÀO PHÂN TÍCH ĐA THỨC THÀNH NHÂN TỬ 102. A Trọng tâm kiến thức 102. 1. Phương pháp đặt nhân tử chung 102. 2. Phương pháp nhóm hạng tử 102. 3. Phương pháp dùng hằng đẳng thức 102. B Các dạng bài tập và phương pháp giải 102. + Dạng 1. Phương pháp đặt nhân tử chung 102. + Dạng 2. Phương pháp nhóm các hạng tử 104. + Dạng 3. Phương pháp dùng hằng đẳng thức 107. + Dạng 4. Phối hợp các phương pháp thông thường 110. + Dạng 5. Phương pháp tách một hạng tử thành nhiều hạng tử 111. + Dạng 6. Phương pháp thêm bớt cùng một hạng tử 113. + Dạng 7. Phương pháp đổi biến 114. + Dạng 8. Tính giá trị của một biểu thức 115. + Dạng 9. Tìm x 118. + Dạng 10. Chứng minh giá trị của biểu thức A chia hết cho số k 122. + Dạng 11. Vận dụng 124. C Bài tập vận dụng 126. LUYỆN TẬP CHUNG 3 146. A Phân tích đa thức thành nhân tử 146. Bài 5 . PHÂN THỨC ĐẠI SỐ 165. A Trọng tâm kiến thức 165. 1. Phân thức đại số 165. 2. Tính chất cơ bản của phân thức 165. 3. Rút gọn phân thức 165. 4. Quy đồng mẫu nhiều phân thức 166. 5. Điều kiện xác định và giá trị của phân thức 166. B Các dạng bài tập và phương pháp giải 166. + Dạng 1. Nhận biết phân thức, xác định tử thức và mẫu thức 166. + Dạng 2. Điều kiện xác định và giá trị của phân thức tại một giá trị đã cho của biến 167. + Dạng 3. Hai phân thức bằng nhau 169. + Dạng 4. Tìm giá trị nhỏ nhất, giá trị lớn nhất của phân thức 171. + Dạng 5. Rút gọn phân thức 172. + Dạng 6. Chứng minh đẳng thức 172. + Dạng 7. Tính giá trị biểu thức 173. + Dạng 8. Chứng minh giá trị biểu thức không phụ thuộc vào biến 174. + Dạng 9. Tìm x thỏa mãn đẳng thức cho trước 175. + Dạng 10. Quy đồng mẫu thức 175. + Dạng 11. Vận dụng 177. C Bài tập vận dụng 178. Bài 6 . CỘNG, TRỪ PHÂN THỨC 185. A Trọng tâm kiến thức 185. 1. Cộng hai phân thức cùng mẫu thức 185. 2. Cộng hai phân thức có mẫu thức khác nhau 185. 3. Phân thức đối 185. 4. Phép trừ 185. B Các dạng bài tập và phương pháp giải 185. + Dạng 1. Cộng, trừ các phân thức cùng mẫu thức 185. + Dạng 2. Cộng, trừ các phân thức không cùng mẫu thức 187. + Dạng 3. Tìm x thõa mãn đẳng thức cho trước 189. + Dạng 4. Rút gọn và tính giá trị biểu thức 190. + Dạng 5. Chứng minh giá trị biểu thức không phụ thuộc vào biến. Chứng minh đẳng thức 190. + Dạng 6. Vận dụng 191. C Bài tập vận dụng 193. Bài 7 . NHÂN, CHIA PHÂN THỨC 200. A Trọng tâm kiến thức 200. 1. Phép nhân các phân thức đại số 200. 2. Phân thức nghịch đảo 200. 3. Phép chia 200. B Các dạng bài tập và phương pháp giải 200. + Dạng 1. Thực hiện phép nhân, phép chia các phân thức 200. + Dạng 2. Rút gọn biểu thức 201. + Dạng 3. Tìm x thỏa mãn đẳng thức cho trước 203. + Dạng 4. Chứng minh giá trị biểu thức không phụ thuộc vào giá trị của biến 203. + Dạng 5. Vận dụng 204. C Bài tập tự luyện 206. LUYỆN TẬP CHUNG 212. A Trọng tâm kiến thức 212. B Các dạng bài tập và phương pháp giải 212. + Dạng 1. Tìm điều kiện của biến để phân thức xác định 212. + Dạng 2. Tìm giá trị của x để phân thức bằng 0 212. + Dạng 3. Rút gọn biểu thức 213. + Dạng 4. Vận dụng 214. C Bài tập vận dụng 215. ÔN TẬP CHƯƠNG I 221. A Đơn thức 221. B Đa thức. Cộng trừ đa thức 225. C Phép nhân đa thức 230. D Phép chia đa thức cho đơn thức 232. E Những hằng đẳng thức đáng nhớ 233. F Phân tích đa thức thành nhân tử 236. G Phân thức đại số. Các phép toán 241. 1. Bài tập rèn luyện 242. 2. Bài tập bổ sung 249.

Nguồn: toanmath.com

Đọc Sách

Chuyên đề đối xứng tâm
Nội dung Chuyên đề đối xứng tâm Bản PDF - Nội dung bài viết Chuyên đề đối xứng tâmI. Tóm tắt lý thuyếtII. Bài tập và các dạng toánA. Các dạng bài cơ bản – nâng caoB. Dạng bài nâng cao phát triển tư duyC. Phiếu bài tự luyện Chuyên đề đối xứng tâm Chuyên đề đối xứng tâm là tài liệu gồm 16 trang, tóm tắt lý thuyết trọng tâm cần đạt, phân dạng và hướng dẫn giải các dạng toán về đối xứng tâm. Tài liệu này tuyển chọn các bài tập từ cơ bản đến nâng cao trong chuyên đề đối xứng tâm, cung cấp đáp án và lời giải chi tiết để hỗ trợ học sinh trong quá trình học tập chương trình Hình học 8 chương 1: Tứ giác. I. Tóm tắt lý thuyết Hai điểm đối xứng qua một điểm: Hai điểm được gọi là đối xứng với nhau qua điểm o nếu o là trung điểm của đoạn thẳng nối hai điểm ấy. Hai hình đối xứng qua một điểm: Hai hình gọi là đối xứng với nhau qua điểm O nếu một điểm bất kì thuộc hình này đối xứng với một điểm thuộc hình kia qua điểm O và ngược lại. Hình có tâm đối xứng: Điểm O gọi là tâm đối xứng của hình H nếu điểm đối xứng với mỗi điểm thuộc hình qua điểm O cũng thuộc hình H. II. Bài tập và các dạng toán A. Các dạng bài cơ bản – nâng cao Dạng 1: Chứng minh hai điểm hoặc hai hình đối xứng với nhau qua một điểm. Phương pháp giải: Sử dụng định nghĩa hai điểm đối xứng hoặc hai hình đối xứng với nhau qua một điểm. Dạng 2: Sử dụng tính chất đối xứng trục để giải toán. Phương pháp giải: Sử dụng nhận xét hai đoạn thẳng (góc, tam giác) đối xứng vói nhau qua một đường thẳng thì bằng nhau. Dạng 3: Tổng hợp. B. Dạng bài nâng cao phát triển tư duy C. Phiếu bài tự luyện Với những thông tin trên, chuyên đề đối xứng tâm cung cấp một cách phân tích chi tiết, cụ thể và dễ hiểu về các khái niệm và bài tập liên quan đến đối xứng tâm trong hình học. Đây là tài liệu hữu ích giúp học sinh rèn luyện kỹ năng và phát triển tư duy trong quá trình học tập.
Chuyên đề hình bình hành
Nội dung Chuyên đề hình bình hành Bản PDF - Nội dung bài viết Chuyên đề hình bình hành Chuyên đề hình bình hành Tài liệu chuyên đề hình bình hành gồm 16 trang, cung cấp tóm tắt lý thuyết cần đạt, phân dạng và hướng dẫn giải các dạng toán liên quan đến hình bình hành. Tài liệu tuyển chọn các bài tập từ cơ bản đến nâng cao, giúp học sinh nắm vững chuyên đề trong chương trình Hình học 8 chương 1: Tứ giác. I. Tóm tắt lý thuyết Hình bình hành là tứ giác có các cặp cạnh đối song song. Trong hình bình hành, các cạnh đối bằng nhau, các góc đối bằng nhau và hai đường chéo cắt nhau tại trung điểm mỗi đường. Để nhận biết hình bình hành, ta cần quan sát các dấu hiệu như cạnh đối song song, cạnh đối bằng nhau, góc đối bằng nhau, hay đường chéo cắt nhau tại trung điểm. II. Bài tập và các dạng toán A. Các dạng bài cơ bản và nâng cao Dạng 1: Vận dụng tính chất của hình bình hành để chứng minh các tính chất hình học. Phương pháp giải: Vận dụng định nghĩa và tính chất về cạnh, góc và đường chéo. Dạng 2: Chứng minh tứ giác là hình bình hành. Phương pháp giải: Sử dụng các dấu hiệu nhận biết để chứng minh. Dạng 3: Chứng minh ba điểm thẳng hàng, các đường thẳng đồng quy. B. Phiếu bài tự luyện Phiếu bài tự luyện cung cấp thêm bài tập để học sinh ôn tập và tự kiểm tra kiến thức của mình trong chuyên đề hình bình hành. Tóm lại, tài liệu chuyên đề hình bình hành là nguồn hướng dẫn hữu ích giúp học sinh nắm vững kiến thức, rèn luyện kỹ năng giải các bài toán liên quan đến hình bình hành trong chương trình Hình học. Hãy luyện tập và học hỏi thật tốt!
Chuyên đề đối xứng trục
Nội dung Chuyên đề đối xứng trục Bản PDF - Nội dung bài viết Chuyên đề đối xứng trụcTóm tắt lý thuyết:Bài tập và các dạng toán: Chuyên đề đối xứng trục Bộ tài liệu này gồm 16 trang, chứa tóm tắt lý thuyết về trọng tâm cần đạt, phân dạng và hướng dẫn giải các dạng toán liên quan đến chuyên đề đối xứng trục. Ngoài ra, tài liệu còn tuyển chọn và trình bày các bài tập từ cơ bản đến nâng cao, kèm theo đáp án và lời giải chi tiết. Được thiết kế nhằm hỗ trợ học sinh trong quá trình học tập chương trình Hình học 8 chương 1: Tứ giác. Tóm tắt lý thuyết: Trong phần này, chúng ta sẽ tìm hiểu về hai điểm đối xứng qua một đường thẳng, hai hình đối xứng qua một đường thẳng và hình có trục đối xứng. Định nghĩa và tính chất của các khái niệm này sẽ giúp bạn hiểu rõ hơn về chuyên đề đối xứng trục. Bài tập và các dạng toán: Phần này sẽ bao gồm các dạng bài cơ bản và nâng cao liên quan đến đối xứng trục. Bạn sẽ được hướng dẫn cách chứng minh hai điểm hoặc hai hình đối xứng qua đường thẳng, sử dụng tính chất đối xứng trục để giải toán, tìm trục đối xứng của một hình và dựng hình sử dụng đối xứng trục. Các bài tập tự luyện cơ bản và nâng cao sẽ giúp bạn phát triển tư duy và hiểu sâu hơn về chuyên đề này. Đặc biệt, với việc tập trung vào các dạng bài toán liên quan đến đối xứng trục, đây sẽ là nguồn tài liệu hữu ích giúp bạn nắm vững kiến thức, rèn luyện kỹ năng giải toán một cách hiệu quả.
Chuyên đề đường trung bình của tam giác, của hình thang
Nội dung Chuyên đề đường trung bình của tam giác, của hình thang Bản PDF - Nội dung bài viết Chuyên Đề Đường Trung Bình của Tam Giác và Hình Thang Chuyên Đề Đường Trung Bình của Tam Giác và Hình Thang Chuyên đề về đường trung bình của tam giác và hình thang là một tài liệu quan trọng giúp học sinh hiểu rõ về các khái niệm cơ bản và áp dụng chúng vào giải các dạng bài tập phức tạp. Tài liệu này bao gồm 23 trang, tóm tắt lý thuyết về trọng tâm, phân dạng và cung cấp hướng dẫn chi tiết từng bước giải các dạng toán liên quan đến đường trung bình của tam giác và hình thang. Ngoài ra, tài liệu còn tuyển chọn các bài tập từ cơ bản đến nâng cao, đồng thời cung cấp đáp án và lời giải chi tiết để hỗ trợ học sinh trong quá trình học tập chương trình Hình học lớp 8 chương 1 về Tứ giác. I. Tóm Tắt Lý Thuyết 1. Đường Trung Bình của Tam Giác - Định nghĩa: Đường trung bình của tam giác là đoạn thẳng nối trung điểm hai cạnh của tam giác. - Định lí 1: Đường thẳng qua trung điểm một cạnh của tam giác và song song với cạnh thứ hai cũng đi qua trung điểm của cạnh thứ ba. - Định lí 2: Đường trung bình của tam giác song song với cạnh thứ ba và có chiều dài bằng nửa cạnh đó. 2. Đường Trung Bình của Hình Thang - Định nghĩa: Đường trung bình của hình thang là đoạn thẳng nối trung điểm hai cạnh bên của hình thang. - Định lí 3: Đường thẳng qua trung điểm một cạnh bên của hình thang và song song với hai đáy thì cũng đi qua trung điểm của cạnh bên thứ hai. - Định lí 4: Đường trung bình của hình thang song song với hai đáy và có chiều dài bằng nửa tổng độ dài hai đáy. II. Bài Tập và Các Dạng Toán A. Các Dạng Bài Minh Họa Cơ Bản và Nâng Cao - Dạng 1: Sử dụng định nghĩa và định lí về đường trung bình của tam giác để chứng minh. - Dạng 2: Sử dụng định nghĩa và định lí về đường trung bình của hình thang để chứng minh. - Dạng 3: Sử dụng phối hợp đường trung bình của tam giác và hình thang để chứng minh. - Dạng 4: Tổng hợp. B. Các Dạng Bài Nâng Cao Phát Triển Tư Duy - Đường trung bình của tam giác và hình thang. C. Phiếu Bài Tự Luyện Cơ Bản và Nâng Cao Đồng thời, tài liệu cung cấp phiếu bài tập tự luyện dành cho học sinh từ cơ bản đến nâng cao, giúp họ rèn luyện kỹ năng và phát triển tư duy toán học một cách hiệu quả. Trên cơ sở nội dung trên, việc hiểu rõ về đường trung bình của tam giác và hình thang sẽ giúp học sinh áp dụng linh hoạt vào các bài toán hình học khác nhau, từ những dạng cơ bản đến phức tạp, từ đó nang cao khả năng giải quyet vấn đề và xây dựng nền móng vững chắc cho kiến thức toán học của mình.