Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh môn Toán năm 2023 2024 sở GD ĐT TP Hồ Chí Minh

Nội dung Đề tuyển sinh môn Toán năm 2023 2024 sở GD ĐT TP Hồ Chí Minh Bản PDF - Nội dung bài viết Đề tuyển sinh môn Toán năm 2023 - 2024 sở GD ĐT TP Hồ Chí Minh Đề tuyển sinh môn Toán năm 2023 - 2024 sở GD ĐT TP Hồ Chí Minh Chúng tôi trân trọng giới thiệu đến quý thầy cô và các em học sinh đề chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán năm học 2023 - 2024 sở Giáo dục và Đào tạo thành phố Hồ Chí Minh. Kỳ thi sẽ diễn ra vào ngày 07 tháng 06 năm 2023. Trích dẫn Đề tuyển sinh lớp 10 môn Toán năm 2023 - 2024 sở GD&ĐT TP Hồ Chí Minh: 1. Cửa hàng A bán hồng với giá 15,000 đồng/bông. Nếu khách hàng mua hơn 10 bông, từ bông thứ 11 trở đi, mỗi bông sẽ được giảm giá 10%. Nếu mua hơn 20 bông, từ bông thứ 21 trở đi, mỗi bông sẽ được giảm thêm 20% trên giá đã giảm. Hỏi nếu khách hàng mua 30 bông hồng thì phải trả bao nhiêu tiền? 2. Bạn Thảo đã mua hồng tại cửa hàng A với số tiền 555,000 đồng. Hỏi bạn Thảo đã mua bao nhiêu bông hồng? 3. Chị Lan sử dụng ấm điện để đun sôi nước. Công suất hao phí P(W) của ấm điện và thời gian đun t (giây) được mô hình hóa bởi hàm số P = at + b. Hãy xác định các hệ số a và b. Nếu công suất hao phí là 105W, thời gian đun sẽ là bao lâu? 4. Bạn Nam cần chuẩn bị hộp nước trái cây có lượng nước 1,2 lít cho 14 người. Nếu mỗi người uống trung bình 3 ly nước trái cây và lượng nước rót bằng 90% thể tích ly, hỏi Nam cần chuẩn bị ít nhất bao nhiêu hộp nước trái cây? Hãy sẵn sàng để tham gia kỳ thi và chúc các em đạt kết quả cao trong kỳ thi sắp tới!

Nguồn: sytu.vn

Đọc Sách

Đề tuyển sinh vào lớp 10 môn Toán năm 2022 - 2023 sở GDĐT Bình Dương
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Bình Dương (đề thi dành cho mọi thí sinh); kỳ thi được diễn ra vào sáng thứ Năm ngày 02 tháng 06 năm 2022. Trích dẫn đề tuyển sinh vào lớp 10 môn Toán năm 2022 – 2023 sở GD&ĐT Bình Dương : + Cho phương trình x2 – (m + 3)x + 2m + 2 = 0 với m là tham số. Tìm giá trị của tham số m để: a) Phương trình có nghiệm x = 3. b) Phương trình có hai nghiệm phân biệt x1 và x2 sao cho x12 + x22 = 13. + Một người nông dân trồng hoa trên một mảnh vườn hình chữ nhật có chiều dài hơn chiều rộng 15m. Cuối mỗi vụ thu hoạch, bình quân người đó bán được 20.000 đồng tiền hoa trên mỗi mét vuông đất. Tính chiều dài và chiều rộng của mảnh vườn đó. Biết tổng số tiền bán hoa cuối vụ từ mảnh vườn người đó thu được là 252 triệu đồng. + Cho tam giác ABC có ba góc đều nhọn. Các đường cao AK, BE và CF cắt nhau tại H. Gọi I là trung điểm của đoạn AH, N là trung điểm của đoạn BC. a) Chứng minh bốn điểm A, E, H, F nằm trên cùng một đường tròn. b) Chứng minh NE là tiếp tuyến của đường tròn đường kính AH. c) Chứng minh CI2 – IE2 = CK.CB.
Đề tuyển sinh vào lớp 10 môn Toán năm 2022 - 2023 sở GDĐT Quảng Ninh
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Quảng Ninh (đề thi dành cho mọi thí sinh); kỳ thi được diễn ra vào sáng thứ Năm ngày 02 tháng 06 năm 2022. Trích dẫn đề tuyển sinh vào lớp 10 môn Toán năm 2022 – 2023 sở GD&ĐT Quảng Ninh : + Hai đội công nhân cùng làm một công việc thì hoàn thành trong 12 ngày. Nếu họ làm riêng thì đội II hoàn thành công việc hết nhiều thời gian hơn đội I là 10 ngày. Hỏi nếu làm riêng, mỗi đội phải làm trong bao nhiêu ngày để xong công việc. + Cho đường tròn tâm O, đường kính AB, dây CD vuông góc với AB tại F. Gọi M là một điểm thuộc cung nhỏ BC (M khác B, M khác C), hai đường thẳng AM và CD cắt nhau tại E. a) Chứng minh tứ giác BMEF nội tiếp. b) Chứng minh tia MA là phân giác của CMD. c) Chứng minh AC2 = AE.AM. d) Gọi I là giao điểm của hai đường thẳng MD và AB, N là giao điểm của hai đường thẳng AM và BC. Chứng minh tâm đường tròn ngoại tiếp tam giác CEN nằm trên đường thẳng CI. + Một tỉnh dự định làm đường điện từ điểm M trên bờ biển đến điểm B trên một hòn đảo. B cách bờ một khoảng BB’ = 2 km, A cách B’ một khoảng AB’ = 3 km (hình vẽ). Biết chi phí làm 1 km đường điện trên bờ là 5 tỷ đồng, dưới biển nước là 13 tỷ đồng. Tìm vị trí điểm C trên đoạn bờ biển AB’ sao cho khi làm đường điện theo đường gấp khúc ACB thì chi phí thấp nhất (coi bờ biển là đường thẳng).
Đề tuyển sinh lớp 10 chuyên môn Toán (chuyên) năm 2022 trường ĐHSP Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức tuyển sinh vào lớp 10 THPT chuyên môn Toán (chuyên) năm 2022 trường Đại học Sư Phạm Hà Nội; đề thi dùng riêng cho thí sinh thi vào lớp chuyên Toán và chuyên Tin học (đề thi vòng 2); kỳ thi được diễn ra vào chiều thứ Tư ngày 01 tháng 06 năm 2022; đề thi có đáp án và lời giải chi tiết (đáp án và lời giải được thực hiện bởi CLB Toán Lim: Nguyễn Duy Khương – Nguyễn Văn Hoàng – Nguyễn Khang – Nguyễn Hoàng Việt). Trích dẫn đề tuyển sinh lớp 10 chuyên môn Toán (chuyên) năm 2022 trường ĐHSP Hà Nội : + Cho đa thức P(x) = ax2 + bx + c (a khác 0). Chứng minh rằng nếu P(x) nhận giá trị nguyên với mỗi số nguyên x thì ba số 2a, a + b, c đều là những số nguyên. Sau đó chứng tỏ nếu ba số 2a, a + b, c là những số nguyên thì P(x) cũng nhận giá trị nguyên với mỗi số nguyên x. + Cho tam giác ABC đều ngoại tiếp (O). Cung nhỏ OB của đường tròn ngoại tiếp tam giác (OBC) cắt đường tròn (O) tại E. Tia BE cắt đường tròn (O) tại điểm thứ hai là F. a) Chứng minh rằng: EO là tia phân giác góc CEF. b) Chứng minh rằng: ABOF là tứ giác nội tiếp. c) Gọi D là giao điểm thứ hai của CE và đường tròn (O). Chứng minh rằng A, F, D thẳng hàng. + Ta viết 10 số 0, 1, …, 9 vào mười ô tròn trong hình bên, mỗi số được viết đúng 1 lần. Sau đó, ta tính tổng ba số trên mỗi đoạn thẳng để nhận được 6 tổng. Có hay không một cách viết 10 số như thế sao cho 6 tổng nhận được là bằng nhau?
Đề tuyển sinh lớp 10 chuyên môn Toán năm 2022 trường ĐHSP Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chính thức tuyển sinh vào lớp 10 THPT chuyên môn Toán năm 2022 trường Đại học Sư Phạm Hà Nội (đề thi dùng cho mọi thí sinh thi vào trường chuyên / Toán chung / Toán điều kiện / vòng 1); kỳ thi được diễn ra vào thứ Tư ngày 01 tháng 06 năm 2022; đề thi có đáp án và lời giải chi tiết (đáp án và lời giải được thực hiện bởi các tác giả Nguyễn Duy Khương, Trịnh Đình Triển, TQĐ, Nguyễn Khang, Nguyễn Hoàng Việt). Trích dẫn đề tuyển sinh lớp 10 chuyên môn Toán năm 2022 trường ĐHSP Hà Nội : + Trong mặt phẳng tọa độ Oxy, hãy viết phương trình đường thẳng (d): y = ax + b biết (d) đi qua A(2;−1) và song song với đường thẳng y = −3x + 1. + Một cửa hàng kinh doanh điện máy sau khi nhập về chiếc tivi, đã bán chiếc tivi đó; cửa hàng thu được lãi là 10% của giá nhập về. Giả sử cửa hàng tiếp tục nâng giá bán chiếc tivi đó thêm 5% của giá đã bán, nhưng bớt cho khách hàng 245000 đồng, khi đó cửa hàng sẽ thu được tiền lãi là 12% của giá nhập về. Tìm giá tiền khi nhập về của chiếc tivi đó. + Cho tam giác ABC đều nội tiếp (O), điểm D thuộc cung AB nhỏ (D khác A,B). Các tiếp tuyến tại B,C của (O) cắt AD theo thứ tự tại E,G. Gọi I là giao điểm của CE và BG. a) Chứng minh rằng △EBC ∽ △BCG. b) Tính số đo góc BIC. Từ đó chỉ ra BIDE là tứ giác nội tiếp. c) Gọi DI ∩ BC = K. Chứng minh rằng: BK2 = KI.KD.