Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh 10 môn Toán năm 2020 2021 trường THPT chuyên Hà Tĩnh (chuyên)

Nội dung Đề tuyển sinh 10 môn Toán năm 2020 2021 trường THPT chuyên Hà Tĩnh (chuyên) Bản PDF - Nội dung bài viết Đề tuyển sinh môn Toán năm 2020 - 2021 trường THPT chuyên Hà Tĩnh (chuyên) Đề tuyển sinh môn Toán năm 2020 - 2021 trường THPT chuyên Hà Tĩnh (chuyên) Đề tuyển sinh môn Toán năm 2020 - 2021 trường THPT chuyên Hà Tĩnh (chuyên) là bài thi dành cho những thí sinh mong muốn vào học tại các lớp chuyên Toán. Kỳ thi diễn ra vào ngày ... tháng 07 năm 2020. Trích dẫn một số câu hỏi trong đề tuyển sinh môn Toán năm 2020 - 2021: Tồn tại hay không số nguyên dương n sao cho 2n + 2021 và 3n + 2020 đều là các số chính phương. Tìm tất cả các cặp số nguyên dương (x;y) sao cho (x^2 - 2)/(xy + 2) có giá trị là số nguyên. Cho hai đường tròn (O) và (O') cắt nhau tại A và B sao cho hai tâm O và O' nằm khác phía đối với đường thẳng AB. Đường thẳng d thay đổi đi qua B cắt các đường tròn (O) và (O') lần lượt tại C và D (d không trùng với đường thẳng AB). Với các câu hỏi rất thú vị và đa dạng về nội dung, đề tuyển sinh môn Toán năm 2020 - 2021 trường THPT chuyên Hà Tĩnh (chuyên) đòi hỏi thí sinh phải có kiến thức sâu rộng và khả năng suy luận tốt. Chúc các thí sinh may mắn và thành công trong kỳ thi sắp tới!

Nguồn: sytu.vn

Đọc Sách

Đề khảo sát Toán vào 10 năm 2024 - 2025 trường chuyên Lam Sơn - Thanh Hóa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi khảo sát chất lượng môn Toán tuyển sinh vào lớp 10 năm học 2024 – 2025 trường THPT chuyên Lam Sơn, tỉnh Thanh Hóa; kỳ thi được diễn ra vào ngày 07 tháng 04 năm 2024. Trích dẫn Đề khảo sát Toán vào 10 năm 2024 – 2025 trường chuyên Lam Sơn – Thanh Hóa : + Cho phương trình: x2 – (4m – 1)x + 3m2 – 2m = 0 (m là tham số). a) Giải phương trình khi m = 2. b) Tìm m để phương trình có hai nghiệm x1, x2 sao cho. + Cho hai đường tròn (O) và (O’) cắt nhau tại hai điểm A và B. Kẻ tiếp tuyến chung DE của hai đường tròn với D thuộc (O) và E thuộc (O’) sao cho B gần tiếp tuyến đó hơn so với A. a) Chứng minh rằng DAB = BDE. b) Đường thẳng DB cắt AE tại P, đường thẳng EB cắt AD tại Q. Chứng minh tứ giác APBQ nội tiếp đường tròn. c) Chứng minh bán kính đường tròn ngoại tiếp tam giác ADE bằng bán kính đường tròn ngoại tiếp tam giác BDE.
Đề giao lưu Toán vào lớp 10 năm 2024 trường THPT Quảng Xương 1 - Thanh Hoá
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi giao lưu kiến thức môn Toán tuyển sinh vào lớp 10 THPT năm học 2023 – 2024 trường THPT Quảng Xương 1, tỉnh Thanh Hoá; kỳ thi được diễn ra vào ngày 07 tháng 04 năm 2024; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề giao lưu Toán vào lớp 10 năm 2024 trường THPT Quảng Xương 1 – Thanh Hoá : + Trong mặt phẳng tọa độ Oxy cho đường thẳng d có phương trình y m x m (2 1) 1 (m là tham số). Tìm m để đường thẳng d cắt đường thẳng d có phương trình y x 1 tại điểm thuộc trục tung. + Cho đường tròn O R có AB là đường kính. Vẽ đường kính CD không trùng với AB. Tiếp tuyến tại A của đường tròn O R cắt các đường thẳng BC và BD lần lượt tại E và F. Tiếp tuyến tại D của đường tròn O R cắt đường thẳng AF tại Q. 1. Chứng minh tứ giác AODQ nội tiếp. 2. Chứng minh AE AQ AB AO. 3. Biết điểm C di chuyển trên đường tròn O R (C không trùng với A và B) khi biểu thức EB EC FB FD đạt giá trị nhỏ nhất, tính số đo góc BAC.
Đề khảo sát Toán vào 10 vòng 1 năm 2024 - 2025 phòng GDĐT Vũ Thư - Thái Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề khảo sát chất lượng môn Toán tuyển sinh vào lớp 10 THPT vòng 1 năm học 2024 – 2025 phòng Giáo dục và Đào tạo huyện Vũ Thư, tỉnh Thái Bình.
Đáp án đề tham khảo Toán tuyển sinh 10 năm 2024 - 2025 sở GDĐT TP Hồ Chí Minh
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đáp án và lời giải chi tiết bộ đề tham khảo môn Toán tuyển sinh vào lớp 10 THPT năm học 2024 – 2025 sở Giáo dục và Đào tạo thành phố Hồ Chí Minh.