Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát HSG lớp 7 môn Toán năm 2022 2023 trường THCS Cành Nàng Thanh Hóa

Nội dung Đề khảo sát HSG lớp 7 môn Toán năm 2022 2023 trường THCS Cành Nàng Thanh Hóa Bản PDF - Nội dung bài viết Đề khảo sát Học sinh giỏi Toán lớp 7 năm 2022 - 2023 THCS Cành Nàng Thanh Hóa Đề khảo sát Học sinh giỏi Toán lớp 7 năm 2022 - 2023 THCS Cành Nàng Thanh Hóa Chào mừng đến với đề thi khảo sát chọn đội tuyển học sinh giỏi môn Toán lớp 7 năm học 2022 - 2023 của trường THCS Cành Nàng, Thanh Hóa. Đề thi này sẽ giúp các em học sinh lớp 7 ôn tập và kiểm tra kiến thức của mình để chuẩn bị cho cuộc thi sắc đẹp trong tương lai. Đề thi bao gồm các câu hỏi chất lượng, có đáp án và lời giải chi tiết để giúp các em hiểu rõ từng bước giải của bài toán. Dưới đây là một số ví dụ về các câu hỏi trong đề khảo sát: 1. Số A được chia thành 3 số tỉ lệ theo 2 : 3 : 1. Biết rằng tổng các bình phương của ba số đó bằng 24309. Hãy tìm số A. 2. Cho tam giác ABC, M là trung điểm của BC. Trên tia đối của của tia MA lấy điểm E sao cho ME = MA. Hãy chứng minh rằng: a) AC = EB và AC // BE. b) I là một điểm trên AC; K là một điểm trên EB sao cho AI = EK. Chứng minh ba điểm I, M, K thẳng hàng. c) Từ E kẻ EH // BC (H BC). Biết HBE = 50o; MEB = 25o. Tính số đo HEM và BME. 3. Chứng minh rằng nếu 2n + 1 và 3n + 1 (với n là số nguyên dương) đều là các số chính phương thì n chia hết cho 40. Hy vọng rằng đề thi này sẽ giúp các em học sinh lớp 7 rèn luyện và phát triển kỹ năng Toán của mình. Chúc các em thành công trong việc học tập và thi cử!

Nguồn: sytu.vn

Đọc Sách

Đề giao lưu học sinh giỏi Toán 7 năm 2017 - 2018 phòng GDĐT thành phố Thái Nguyên
Đề giao lưu học sinh giỏi Toán 7 năm 2017 – 2018 phòng GD&ĐT thành phố Thái Nguyên
Đề giao lưu HSG Toán 7 năm 2016 - 2017 phòng GDĐT Yên Lạc - Vĩnh Phúc
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề giao lưu HSG Toán 7 năm học 2016 – 2017 phòng GD&ĐT Yên Lạc – Vĩnh Phúc; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề giao lưu HSG Toán 7 năm 2016 – 2017 phòng GD&ĐT Yên Lạc – Vĩnh Phúc : + Cho p và q là hai số nguyên tố lớn hơn 3 và thoả mãn p = q + 2. Tìm số dư khi chia p + q cho 12. + Cho A là một tập hợp gồm 10 chữ số. B là một tập con của A gồm 5 phần tử. Chứng minh rằng trong tập hợp các số có dạng x + y, với x, y là hai phần tử phân biệt thuộc B, có ít nhất 2 số có cùng chữ số hàng đơn vị. + Với mỗi số nguyên dương a, kí hiệu S(a) là số chữ số của a. Tìm số nguyên dương n để là số chẵn.
Đề giao lưu HSG Toán 7 năm 2016 - 2017 phòng GDĐT Vĩnh Lộc - Thanh Hóa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề giao lưu HSG Toán 7 năm 2016 – 2017 phòng GD&ĐT Vĩnh Lộc – Thanh Hóa; đề thi có đáp án + lời giải + thang điểm. Trích dẫn đề giao lưu HSG Toán 7 năm 2016 – 2017 phòng GD&ĐT Vĩnh Lộc – Thanh Hóa : + Cho tam giác ABC (AB < AC, góc B = 600). Hai phân giác AD và CE của ABC cắt nhau ở I, từ trung điểm M của BC kẻ đường vuông góc với đường phân giác AI tại H, cắt AB ở P, cắt AC ở K. a) Tính AIC. b) Tính độ dài cạnh AK biết PK = 6cm, AH = 4 cm. c) Chứng minh IDE cân. + Tìm độ dài 3 cạnh của tam giác có chu vi bằng 13cm. Biết độ dài 3 đường cao tương ứng lần lượt là 2cm, 3cm, 4cm. + Chứng minh rằng 10 là số vô tỉ.
Đề khảo sát HSG Toán 7 năm 2016 - 2017 phòng GDĐT thành phố Thái Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề khảo sát HSG Toán 7 năm 2016 – 2017 phòng GD&ĐT thành phố Thái Bình; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề khảo sát HSG Toán 7 năm 2016 – 2017 phòng GD&ĐT thành phố Thái Bình : + Một đội công nhân có 39 người, được chia thành ba nhóm I, II, III. Nếu thêm 1 người vào nhóm I, thêm 2 người vào nhóm II và bớt 3 người của nhóm III thì số công nhân của ba nhóm I, II, III tỉ lệ nghịch với các số 4; 3; 2. Tìm số công nhân của mỗi nhóm. + Cho tam giác DEF có D = 60. Tia phân giác của góc E cắt cạnh DF ở P. Tia phân giác của góc F cắt cạnh DE ở Q. Gọi O là giao điểm của PE và QF. 1. Tính số đo EOF và chứng minh OP = OQ. 2. Tìm điều kiện của tam giác DEF để hai điểm P và Q cách đều đường thẳng EF. + Cho tam giác ABC có góc A nhọn. Vẽ về phía ngoài tam giác ABC hai tam giác ABM, ACN vuông cân tại A. Gọi E là giao điểm của BN và CM. 1. Chứng minh ABN = AMC và BN CM. 2. Cho BM = 5 cm, CN = 7 cm, BC = 3 cm. Hãy tính độ dài đoạn thẳng MN.