Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Ứng dụng phương pháp tọa độ để giải các bài toán hình học không gian

Tài liệu cung cấp cách gắn hệ trục tọa độ Oxyz vào các khối đa diện thường gặp. Các ví dụ minh họa điển hình kèm theo giải thích chi tiết sẽ giúp bạn đọc nắm kĩ hơn về kĩ thuật tọa độ hóa. Bước 1 . Chọn hệ trục tọa độ Oxyz trong không gian Ta có: Ox, Oy, Oz vuông góc với nhau từng đôi một. Do đó, nếu hình vẽ bài toán cho có chứa các cạnh vuông góc thì ta ưu tiên chọn các cạnh đó làm trục tọa độ. Cụ thể: Với hình lập phương hoặc hình hộp chữ nhật ABCD.A’B’C’D’ Với hình lập phương Chọn hệ trục tọa độ sao cho: A(0; 0; 0); B(a; 0; 0); C(a; a; 0); D(0; a; 0) A’(0; 0; a); B’(a; 0; a); C’(a; a; 0); D’(0; a; a) Với hình hộp chữ nhật Chọn hệ trục tọa độ sao cho: A(0; 0; 0); B(a; 0; 0); C(a; b; 0); D(0; b; 0) A’(0; 0; c); B’(a; 0; c); C’(a; b; c); D’(0; b; c) Với hình hộp đáy là hình thoi ABCD.A’B’C’D’ Chọn hệ trục tọa độ sao cho: + Gốc tọa độ trùng với giao điểm O của hai đường chéo của hình thoi ABCD + Trục Oz đi qua 2 tâm của 2 đáy [ads] Với hình chóp tứ giác đều S.ABCD Với hình chóp tam giác đều S.ABC Với hình chóp S.ABCD có ABCD là hình chữ nhật và SA ⊥ (ABCD) Với hình chóp S.ABC có ABCD là hình thoi và SA ⊥ (ABCD) Với hình chóp S.ABC có SA ⊥ (ABC) và Δ ABC vuông tại A Với hình chóp S.ABC có SA ⊥ (ABC) và Δ ABC vuông tại B Với hình chóp S.ABC có (SAB) ⊥ (ABC), Δ SAB cân tại S và Δ ABC vuông tại C Với hình chóp S.ABC có (SAB) ⊥ (ABC), Δ SAB cân tại S và Δ ABC vuông tại A Bước 2 . Sử dụng các kiến thức về tọa độ để giải quyết bài toán Các dạng câu hỏi thường gặp: Khoảng cách, góc, diện tích thiết diện, thể tích khối đa diện Một số kiến thức Hình học bổ sung Bài tập vận dụng

Nguồn: toanmath.com

Đọc Sách

Bài toán cực trị tọa độ không gian Oxyz
Tài liệu gồm 47 trang, trình bày lý thuyết trọng tâm, các dạng toán trọng tâm kèm phương pháp giải và bài tập trắc nghiệm tự luyện chuyên đề bài toán cực trị tọa độ không gian Oxyz, có đáp án và lời giải chi tiết; hỗ trợ học sinh lớp 12 trong quá trình học tập chương trình Toán 12 phần Hình học chương 3. I. LÝ THUYẾT TRỌNG TÂM II. CÁC DẠNG TOÁN TRỌNG TÂM VÀ PHƯƠNG PHÁP GIẢI Dạng 1: Tìm điểm M thuộc (P) sao cho u aMA bMB cMC có u đạt min. Dạng 2: Tìm điểm M thuộc (P) sao cho 222 T aMA bMB cMC đạt max hoặc min. Dạng 3: Tìm điểm M thuộc (P) sao cho MA MB min hoặc MA MB max. Dạng 4: Bài toán lập phương trình mặt phẳng, đường thẳng có yếu tố cực trị. Dạng 5: Bài toán tìm điểm M thuộc đường thẳng có yếu tố cực trị. Dạng 6: Một số bài toán cực trị khoảng cách liên quan đến mặt cầu. Dạng 7: Bài toán cực trị liên quan đến góc. BÀI TẬP TỰ LUYỆN. LỜI GIẢI BÀI TẬP TỰ LUYỆN.
Bài toán tìm điểm trong không gian
Tài liệu gồm 18 trang, trình bày lý thuyết trọng tâm, các dạng toán trọng tâm kèm phương pháp giải và bài tập trắc nghiệm tự luyện chuyên đề bài toán tìm điểm trong không gian, có đáp án và lời giải chi tiết; hỗ trợ học sinh lớp 12 trong quá trình học tập chương trình Toán 12 phần Hình học chương 3. Dạng 1: Tìm hình chiếu vuông góc của điểm trên đường thẳng hoặc mặt phẳng. Dạng 2: Tìm điểm M thuộc đường thẳng d thỏa mãn điều kiện K cho trước. Dạng 3: Tìm điểm M trên mặt phẳng (P) sao cho MA = MB = MC. Dạng 4: Tìm điểm M trên mặt phẳng (P) sao cho MA = MB và điểm M thỏa mãn điều kiện K cho trước. BÀI TẬP TỰ LUYỆN. LỜI GIẢI BÀI TẬP TỰ LUYỆN.
Bài toán về phương trình mặt cầu
Tài liệu gồm 27 trang, trình bày lý thuyết trọng tâm, các dạng toán trọng tâm kèm phương pháp giải và bài tập trắc nghiệm tự luyện chuyên đề bài toán về phương trình mặt cầu, có đáp án và lời giải chi tiết; hỗ trợ học sinh lớp 12 trong quá trình học tập chương trình Toán 12 phần Hình học chương 3. Dạng 1: Lập phương trình mặt cầu. Dạng 2: Bài toán mặt cầu tiếp xúc với mặt phẳng. Dạng 3: Bài toán tương giao mặt cầu với mặt phẳng. Dạng 4: Bài toán tương giao mặt cầu với đường thẳng. BÀI TẬP TỰ LUYỆN. LỜI GIẢI BÀI TẬP TỰ LUYỆN.
Bài toán viết phương trình đường thẳng
Tài liệu gồm 30 trang, trình bày lý thuyết trọng tâm, các dạng toán trọng tâm kèm phương pháp giải và bài tập trắc nghiệm tự luyện chuyên đề bài toán viết phương trình đường thẳng, có đáp án và lời giải chi tiết; hỗ trợ học sinh lớp 12 trong quá trình học tập chương trình Toán 12 phần Hình học chương 3. Dạng 1: Viết phương trình đường thẳng khi biết vectơ chỉ phương. Dạng 2: Viết phương trình đường thẳng khi biết cặp vectơ pháp tuyến. Dạng 3: Lập phương trình đường thẳng d’ qua A cắt d và vuông góc với ∆ (hoặc song song với (P)). Dạng 4: Lập phương trình đường thẳng ∆ cắt d1 và d2 đồng thời song song với d (hoặc vuông góc với (P), hoặc đi qua điểm M). Dạng 5: Viết phương trình đường phân giác của hai đường thẳng. Dạng 6: Viết phương trình đường thẳng liên quan đến góc và khoảng cách. Dạng 7: Viết phương trình đường thẳng vuông góc chung của hai đường thẳng chéo nhau. Dạng 8: Viết phương trình đường thẳng ∆ là hình chiếu vuông góc của d lên mặt phẳng (P). BÀI TẬP TỰ LUYỆN. LỜI GIẢI BÀI TẬP TỰ LUYỆN.