Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử Toán vào năm 2022 2023 phòng GD ĐT Sa Pa Lào Cai

Nội dung Đề thi thử Toán vào năm 2022 2023 phòng GD ĐT Sa Pa Lào Cai Bản PDF - Nội dung bài viết Đề thi thử Toán vào năm 2022-2023 phòng GD&ĐT Sa Pa Lào Cai Đề thi thử Toán vào năm 2022-2023 phòng GD&ĐT Sa Pa Lào Cai Bạn đang chuẩn bị cho kỳ thi tuyển sinh vào lớp 10 THPT và muốn thử sức với đề thi thử Toán từ phòng GD&ĐT Sa Pa, Lào Cai? Hãy cùng Sytu khám phá những bài toán thú vị dưới đây: 1. Hai người làm cùng một công việc sẽ hoàn thành xong sau 2 giờ 24 phút. Nếu người thứ nhất làm trong 3 giờ và người thứ hai làm trong 1 giờ, tổng cộng họ hoàn thành được 11/12 công việc. Hỏi nếu làm một mình, mỗi người cần bao nhiêu giờ để hoàn thành công việc? 2. Gieo con xúc xắc cân đối và đồng chất. Biến cố A là xuất hiện mặt có số chấm không vượt quá 4. Hãy tính xác suất của biến cố A. 3. Tam giác ABC vuông ở A, AB = 6cm và AC = 8cm. Hãy tính độ dài đường cao AH của tam giác và độ dài bán kính đường tròn ngoại tiếp tam giác ABC.

Nguồn: sytu.vn

Đọc Sách

Đề tuyển sinh môn Toán (chuyên) năm 2022 2023 sở GD ĐT Quảng Ngãi
Nội dung Đề tuyển sinh môn Toán (chuyên) năm 2022 2023 sở GD ĐT Quảng Ngãi Bản PDF - Nội dung bài viết Đề tuyển sinh môn Toán (chuyên) năm 2022 2023 sở GD ĐT Quảng Ngãi Đề tuyển sinh môn Toán (chuyên) năm 2022 2023 sở GD ĐT Quảng Ngãi Chào đón quý thầy cô và các em học sinh lớp 9, chúng tôi xin giới thiệu đến bạn đề thi chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán (hệ chuyên) năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Quảng Ngãi. Kỳ thi sẽ diễn ra vào thứ Năm ngày 23 tháng 06 năm 2022. Trích dẫn đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2022 – 2023 sở GD&ĐT Quảng Ngãi: + Đề bài 1: Cho bốn số thực a, b, c, d thỏa mãn a + b + c + d = 10 và a2 + b2 + c2 + d2 = 28. Hãy tìm giá trị lớn nhất của biểu thức T = ab + ac + ad. + Đề bài 2: Đề cho đường tròn tâm O, bán kính R và hai điểm B, C cố định trên (O), BC = R. Điểm A thay đổi trên cung lớn BC của (O) sao cho AB < AC. ... (Nội dung chi tiết và phức tạp của đề bài 2) + Đề bài 3: Một số nguyên dương được gọi là “số đặc biệt” nếu thỏa mãn các điều kiện nhất định. ... (Nội dung chi tiết và phức tạp của đề bài 3) Với những câu hỏi thú vị và phức tạp như vậy, chúng ta cần phải rèn luyện kiến thức và kỹ năng làm bài Toán một cách chắc chắn. Hy vọng rằng đề thi này sẽ giúp các em học sinh chuẩn bị tốt cho kỳ thi tuyển sinh và có thể vượt qua thử thách một cách xuất sắc.
Đề tuyển sinh môn Toán (chuyên Toán) năm 2022 2023 sở GD ĐT Hà Nội
Nội dung Đề tuyển sinh môn Toán (chuyên Toán) năm 2022 2023 sở GD ĐT Hà Nội Bản PDF - Nội dung bài viết Đề tuyển sinh môn Toán (chuyên Toán) năm 2022-2023 sở GD ĐT Hà Nội Đề tuyển sinh môn Toán (chuyên Toán) năm 2022-2023 sở GD ĐT Hà Nội Chào đón quý thầy cô và các em học sinh lớp 9, đây là đề thi chính thức cho kỳ thi tuyển sinh vào lớp 10 môn Toán (chuyên Toán) năm học 2022-2023 của sở Giáo dục và Đào tạo thành phố Hà Nội. Kỳ thi sẽ diễn ra vào thứ Hai ngày 20 tháng 06 năm 2022. Đề thi bao gồm đáp án và lời giải chi tiết, do CLB Toán Lim (Nguyễn Duy Khương, Nguyễn Hoàng Việt, Trịnh Đình Triển, Nguyễn Văn Hoàng) thực hiện. Trích dẫn một số câu hỏi từ đề tuyển sinh lớp 10 môn Toán (chuyên Toán) năm 2022-2023 của sở GD&ĐT Hà Nội: 1. Tam giác ABC ngoại tiếp (I), (I) tiếp xúc với BC, CA, AB tại D, E, F. a) Gọi AI gặp DF tại M. Chứng minh rằng: CM vuông góc AI. b) Gọi AI gặp DE tại N. Chứng minh rằng: DM = DN. c) Các tiếp tuyến tại M, N của (K, KM) cắt nhau tại S. Chứng minh rằng AS // ID. 2. Tập hợp A gồm 70 số nguyên dương không vượt quá 90, B là tập hợp các số có dạng x + y với x thuộc A, y thuộc A (x, y không nhất thiết phân biệt). a) Chứng minh rằng 68 thuộc B. b) Chứng minh rằng B chứa 91 số nguyên liên tiếp. 3. Tìm hai số nguyên dương m, n sao cho m^3 - m n và n^3 - m n đều là số nguyên tố. Hy vọng rằng các em học sinh sẽ học tập và thực hành trên đề thi này để chuẩn bị tốt nhất cho kỳ thi sắp tới. Chúc quý thầy cô và các em thành công!
Đề tuyển sinh môn Toán (chuyên Tin) năm 2022 2023 sở GD ĐT Hà Nội
Nội dung Đề tuyển sinh môn Toán (chuyên Tin) năm 2022 2023 sở GD ĐT Hà Nội Bản PDF - Nội dung bài viết Đề thi tuyển sinh môn Toán (chuyên Tin) năm 2022 2023 sở GD ĐT Hà Nội Đề thi tuyển sinh môn Toán (chuyên Tin) năm 2022 2023 sở GD ĐT Hà Nội Các thầy cô và các em học sinh lớp 9 thân mến, Sytu xin giới thiệu đến quý vị đề thi chính thức kỳ thi tuyển sinh vào lớp 10 môn Toán (chuyên Tin) năm học 2022 – 2023 của sở Giáo dục và Đào tạo thành phố Hà Nội. Kỳ thi sẽ diễn ra vào thứ Hai ngày 20 tháng 06 năm 2022. Dưới đây là trích dẫn các câu hỏi từ đề tuyển sinh lớp 10 môn Toán (chuyên Tin) năm 2022 – 2023 sở GD&ĐT Hà Nội: 1. Tìm tất cả các số nguyên dương a, b và c sao cho các phương trình x2 – 2ax + b = 0, x2 – 2bx + c = 0 và x2 – 2cx + a = 0 đều có nghiệm là các số nguyên dương. 2. Trong tam giác ABC với AB < AC, nội tiếp đường tròn (O). Ba đường cao AD, BE và CF cùng đi qua điểm H. Gọi I và K lần lượt là trung điểm của các đoạn thẳng EF và BC. a) Chứng minh AI/AK = HI/HK. b) Chứng minh đường thẳng AH là tiếp tuyến của đường tròn ngoại tiếp tam giác IHK. c) Gọi P là chân đường vuông góc kẻ từ điểm H đến đường thẳng EF. Chứng minh đường thẳng DP song song với đường thẳng AI. 3. Trên bảng có hai số tự nhiên m và n. An và Bình chơi trò chơi loại bỏ số như sau: Mỗi lượt chơi, một người chơi chọn một số trên bảng để loại bỏ và thay thế bằng hiệu không âm của số đó với một ước số tự nhiên bất kỳ của số đó. Hai bạn chơi lần lượt và người không thể thực hiện lượt chơi là người thua cuộc. Biết rằng An chơi lượt đầu tiên, hãy chỉ ra chiến thuật để An chiến thắng với m = 2022 và n = 2023, cũng như với m = 2022 và n = 1981.
Đề tuyển sinh THPT môn Toán năm 2022 2023 sở GD ĐT Hà Nội
Nội dung Đề tuyển sinh THPT môn Toán năm 2022 2023 sở GD ĐT Hà Nội Bản PDF - Nội dung bài viết Đề thi tuyển sinh THPT môn Toán năm 2022 - 2023 sở GDĐT Hà Nội Đề thi tuyển sinh THPT môn Toán năm 2022 - 2023 sở GDĐT Hà Nội Chào đón các thầy cô giáo và các em học sinh lớp 9! Dưới đây là đề thi chính thức của kỳ thi tuyển sinh vào lớp 10 THPT môn Toán năm học 2022 - 2023 do sở Giáo dục và Đào tạo thành phố Hà Nội tổ chức. Lịch thi được xác định vào sáng Chủ Nhật ngày 19 tháng 06 năm 2022. Trích đề tuyển sinh lớp 10 THPT môn Toán năm 2022 - 2023 sở GD&ĐT Hà Nội: + Bài 1: Một ô tô và một xe máy khởi hành từ địa điểm A và đi đến địa điểm B. Biết vận tốc của ô tô lớn hơn vận tốc của xe máy là 20 km/h, ô tô đến B sớm hơn xe máy 30 phút. Tính vận tốc của mỗi xe khi quãng đường AB dài 60 km. + Bài 2: Tính diện tích bề mặt của quả bóng đá dành cho trẻ em từ 6-8 tuổi, có hình dạng hình cầu với bán kính 9,5 cm (lấy pi = 3,14). + Bài 3: Chứng minh các điều sau đây trong tam giác ABC vuông cân: AMBH là tứ giác nội tiếp, BC.BM = BH.BE và HM là tia phân giác của góc AHB, ba điểm H, K, M thẳng hàng. Hy vọng các bạn sẽ tự tin và thành công trong kỳ thi sắp tới!