Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Phân tích đa thức thành nhân tử bằng cách phối hợp nhiều phương pháp

Nội dung Phân tích đa thức thành nhân tử bằng cách phối hợp nhiều phương pháp Bản PDF - Nội dung bài viết Phân tích đa thức thành nhân tử bằng cách phối hợp nhiều phương pháp Phân tích đa thức thành nhân tử bằng cách phối hợp nhiều phương pháp Trên thực tế, khi chúng ta phân tích đa thức thành nhân tử, đôi khi cần phải kết hợp nhiều phương pháp để có thể phân tích triệt để. Có nhiều phương pháp thông thường mà chúng ta có thể áp dụng, bao gồm: Phương pháp ưu tiên số một: Đặt nhân tử chung. Khi sử dụng phương pháp này, chúng ta cố gắng tìm một nhân tử chung cho các hạng tử của đa thức để dễ dàng phân tích. Phương pháp ưu tiên số hai: Sử dụng hằng đẳng thức. Chúng ta có thể sử dụng hằng đẳng thức để phân tích đa thức thành nhân tử, giúp quá trình phân tích trở nên hiệu quả hơn. Nhóm các hạng tử. Khi chúng ta nhóm các hạng tử lại với nhau, việc phân tích trở nên dễ dàng hơn bằng cách đặt nhân tử chung hoặc sử dụng hằng đẳng thức. Ngoài ra, chúng ta cũng có thể áp dụng các phương pháp nâng cao khác như: Tách một hạng tử thành nhiều hạng tử. Bằng cách này, chúng ta có thể tách một hạng tử thành nhiều hạng tử để dễ dàng phân tích đa thức thành nhân tử. Thêm và bớt cùng một hạng tử. Đôi khi, chúng ta cần tăng thêm hoặc bớt đi các hạng tử để phân tích đa thức, giúp quá trình phân tích trở nên linh hoạt hơn. Đổi biến. Khi gặp đa thức phức tạp, chúng ta có thể sử dụng cách đổi biến để đơn giản hóa đa thức trước khi phân tích thành nhân tử. Thông qua việc kết hợp các phương pháp phân tích, chúng ta có thể giải quyết các bài toán phức tạp và hiệu quả hơn trong quá trình học Toán lớp 8.

Nguồn: sytu.vn

Đọc Sách

Chuyên đề đường trung bình của tam giác, của hình thang
Tài liệu gồm 23 trang, tóm tắt lý thuyết trọng tâm cần đạt, phân dạng và hướng dẫn giải các dạng toán, tuyển chọn các bài tập từ cơ bản đến nâng cao chuyên đề đường trung bình của tam giác, của hình thang, có đáp án và lời giải chi tiết, hỗ trợ học sinh trong quá trình học tập chương trình Hình học 8 chương 1: Tứ giác. I. TÓM TẮT LÝ THUYẾT 1. Đường trung bình của tam giác + Định nghĩa: Đường trung bình của tam giác là đoạn thẳng nối trung điểm hai cạnh của tam giác. + Định lí 1: Đường thẳng đi qua trung điểm một cạnh của tam giác và song song với cạnh thứ hai thì đi qua trung điểm cạnh thứ ba. + Định lí 2: Đường trung bình của tam giác thì song song với cạnh thứ ba và bằng nửa cạnh ấy. 2. Đường trung bình của hình thang + Định nghĩa: Đường trung bình của hình thang là đoạn thẳng nối trung điểm hai cạnh bên của hình thang. + Định lí 3: Đường thẳng đi qua trung điểm một cạnh bên của hình thang và song song vói hai đáy thì đi qua trung điểm cạnh bên thứ hai. + Định lí 4: Đường trung bình của hình thang song song với hai đáy và bằng nửa tổng hai đáy. II. BÀI TẬP VÀ CÁC DẠNG TOÁN A. CÁC DẠNG BÀI MINH HỌA CƠ BẢN VÀ NÂNG CAO + Dạng 1. Sử dụng định nghĩa và định lí về đường trung bình của tam giác để chứng minh. Phương pháp giải: Sử dụng Định nghĩa đường trung bình của tam giác, Định lí 1, Định lí 2 để suy ra điều cân chứng minh. + Dạng 2. Sử dụng định nghĩa và định lí về đường trung bình của hình thang để chứng minh. Phương pháp giải: Sử dụng Định nghĩa đường trung bình của hình thang, Định lí 3, Định lí 4 để suy ra điều cần chứng minh. + Dạng 3. Sử dụng phối hợp đường trung bình của tam giác và đường trung bình của hình thang để chứng minh. Phương pháp giải: Sử dụng Định nghĩa đường trung bình của tam giác, Định nghĩa đường trung bình của hình thang và các Định lí : 1, 2, 3, 4 để suy ra điều cần chứng minh. + Dạng 4. Tổng hợp. B.CÁC DẠNG BÀI NÂNG CAO PHÁT TRIỂN TƯ DUY + Đường trung bình của tam giác. + Đường trung bình của hình thang. C. PHIẾU BÀI TỰ LUYỆN CƠ BẢN VÀ NÂNG CAO
Chuyên đề hình thang cân
Tài liệu gồm 19 trang, tóm tắt lý thuyết trọng tâm cần đạt, phân dạng và hướng dẫn giải các dạng toán, tuyển chọn các bài tập từ cơ bản đến nâng cao chuyên đề hình thang cân, có đáp án và lời giải chi tiết, hỗ trợ học sinh trong quá trình học tập chương trình Hình học 8 chương 1: Tứ giác. I. TÓM TẮT LÝ THUYẾT 1. Khái niệm: Hình thang cân là hình thang có hai góc kề một đáy bằng nhau. 2. Tính chất: + Trong hình thang cân, hai cạnh bên bằng nhau. + Trong hình thang cân, hai đuờng chéo bằng nhau. 3. Dấu hiệu nhận biết: + Hình thang có hai góc kề một cạnh đáy bằng nhau là hình thang cân. + Hình thang có hai đường chéo bằng nhau là hình thang cân. II. BÀI TẬP VÀ CÁC DẠNG TOÁN A. CÁC DẠNG BÀI MINH HỌA Dạng 1. Tính số đo góc, độ dài cạnh và diện tích hình thang cân. Phương pháp giải: Sử dụng tính chất hình thang cân về cạnh góc, đường chéo và công thức tính diện tích hình thang để tính toán. Dạng 2. Chứng minh hình thang cân. Phương pháp giải: Sử dụng dấu hiệu nhận biết hình thang cân. Dạng 3. Chứng minh các cạnh bằng nhau, các góc bằng nhau trong hình thang cân. B. PHIẾU BÀI TỰ LUYỆN
Chuyên đề hình thang
Tài liệu gồm 09 trang, tóm tắt lý thuyết trọng tâm cần đạt, phân dạng và hướng dẫn giải các dạng toán, tuyển chọn các bài tập từ cơ bản đến nâng cao chuyên đề hình thang, có đáp án và lời giải chi tiết, hỗ trợ học sinh trong quá trình học tập chương trình Hình học 8 chương 1: Tứ giác. I. TÓM TẮT LÝ THUYẾT II. BÀI TẬP VÀ CÁC DẠNG TOÁN A. CÁC DẠNG BÀI MINH HỌA Dạng 1. Tính số đo góc. Phương pháp giải: Sử dụng tính chất hai đường thẳng song song và tổng bốn góc của một tứ giác. Kết hợp các kiến thức đã học và tính chất dãy tỉ số bằng nhau, toán tổng hiệu … để tính ra số đo các góc. Dạng 2. Chứng minh hình thang, hình thang vuông. Phương pháp giải: Sử dụng định nghĩa hình thang, hình thang vuông. Dạng 3. Chứng minh mối liên hệ giữa các cạnh, tính diện tích của hình thang, hình thang vuông. B. PHIẾU BÀI TỰ LUYỆN
Chuyên đề tứ giác
Tài liệu gồm 15 trang, tóm tắt lý thuyết trọng tâm cần đạt, phân dạng và hướng dẫn giải các dạng toán, tuyển chọn các bài tập từ cơ bản đến nâng cao chuyên đề tứ giác, có đáp án và lời giải chi tiết, hỗ trợ học sinh trong quá trình học tập chương trình Hình học 8 chương 1: Tứ giác. I. TÓM TẮT LÝ THUYẾT II. BÀI TẬP VÀ CÁC DẠNG TOÁN A. CÁC DẠNG BÀI MINH HỌA CƠ BẢN Dạng 1. Tính số đo góc. Dạng 2. Tìm mối liên hệ giữa các cạnh, đường chéo của tứ giác. Dạng 3. Tổng hợp. B. DẠNG BÀI NÂNG CAO PHÁT TRIỂN TƯ DUY Dạng 1. Tính số đo góc. Dạng 2. So sánh các độ dài. Dạng 3. Bài toán giải bằng phương trình tô màu. C. PHIẾU BÀI TỰ LUYỆN CƠ BẢN VÀ NÂNG CAO