Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đường thẳng trong hệ trục Oxyz (VD - VDC) - Nguyễn Xuân Chung

Tài liệu gồm 33 trang được biên soạn bởi thầy giáo Nguyễn Xuân Chung, hướng dẫn giải một số bài toán vận dụng và vận dụng cao liên quan đến phương trình đường thẳng trong hệ trục tọa độ không gian Oxyz, giúp học sinh khối 12 học tốt chương trình Hình học 12 chương 3 và ôn thi Trung học Phổ thông Quốc gia môn Toán. Khái quát nội dung tài liệu đường thẳng trong hệ trục Oxyz (VD – VDC) – Nguyễn Xuân Chung: I. CÁC VẤN ĐỀ VÀ VÍ DỤ GIẢI TOÁN Vấn đề 1 : Lập phương trình đường thẳng. Trong phần này chúng ta nghiên cứu giải một số bài toán về đường thẳng trong hệ tọa không gian Oxyz ở mức vận dụng và vận dụng cao. Trong đó có các mối liên hệ bao gồm điểm – đường thẳng – mặt phẳng – mặt cầu, nhưng chủ đề là đường thẳng. Như lập phương trình đường thẳng. Có một số bài toán mà đề bài cho giả thiết về đường thẳng, nhưng trong bài làm ta rất ít sử dụng đến kiến thức về đường thẳng trong không gian. [ads] Vấn đề 2 : Khoảng cách – góc – min – max. Xuất phát là: Đường thẳng ∆ đi qua điểm M(x0;y0;z0), có véctơ chỉ phương u = (a;b;c) và điểm A(x1;y1;z1) không thuộc ∆. Đặc biệt hơn khi ∆ có thể viết được dạng chính tắc là: (x – x0)/a = (y – y0)/b = (z – z0)/c. Các bài toán vận dụng đơn giản là: + Tìm tọa độ hình chiếu H của A trên ∆. + Tìm tọa độ A’ đối xứng của A qua ∆. + Tính khoảng cách từ A đến ∆. Cả ba bài toán trên đều được giải nếu ta tìm được tọa độ của H. Cách giải ta thường sử dụng là: Lấy điểm H thuộc ∆ dạng tham số, sau đó tính AH, rồi cho u.AH = 0 để tìm tham số t, cuối cùng thay t trở về suy ra H. Hay một số cách giải khác. II. CÁC BÀI TẬP LUYỆN TẬP

Nguồn: toanmath.com

Đọc Sách

600 câu vận dụng cao phương pháp tọa độ trong không gian ôn thi THPT môn Toán
Tài liệu gồm 71 trang, được sưu tầm và tổng hợp bởi Tư Duy Mở Trắc Nghiệm Toán Lý, tuyển chọn 600 câu vận dụng cao (VDC) phương pháp tọa độ trong không gian có đáp án, giúp học sinh ôn thi THPT môn Toán. Trích dẫn tài liệu 600 câu vận dụng cao phương pháp tọa độ trong không gian ôn thi THPT môn Toán: + Trong không gian Oxyz, cho hình lăng trụ tam giác đều ABC.A1B1C1 có A1(√3; −1; 1), hai đỉnh B, C thuộc trục Oz và AA1 = 1, (C không trùng với O). Biết u = (a; b; 2) là một véc-tơ chỉ phương của đường thẳng A1C. Tính T = a2 + b. + Trong không gian với hệ trục tọa độ Oxyz cho các điểm A(2; 3; 3), B(−2; −1; 1). Gọi (S) và (S0) là hai mặt cầu thay đổi nhưng luôn tiếp xúc với đường thẳng AB lần lượt tại các tiếp điểm A, B đồng thời tiếp xúc ngoài với nhau tại M(a; b; c). Tính giá trị của a + b + c biết rằng khoảng cách từ M tới mặt phẳng (P): x + 2y − 2z + 2018 = 0 đạt giá trị lớn nhất. [ads] + Trong không gian, cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và B với AB = BC = a, AD = 2a, cạnh bên SA = a và SA vuông góc với đáy. Gọi E là trung điểm của AD. Tính diện tích S của mặt cầu ngoại tiếp hình chóp S.CDE.
Chuyên đề phương pháp tọa độ trong không gian - Nguyễn Tăng Vũ
Tài liệu gồm 18 trang, được biên soạn bởi thầy giáo Nguyễn Tăng Vũ (phát hành ngày 11 tháng 04 năm 2020), trình bày tóm tắt lý thuyết, một số ví dụ minh họa và tuyển chọn bài tập các chuyên đề trong chương trình Hình học 12 chương 3: Phương pháp tọa độ trong không gian; tài liệu giúp học sinh học tốt chương trình Toán 12 và ôn thi tốt nghiệp THPT, tuyển sinh vào Đại học – Cao đẳng. Khái quát nội dung tài liệu chuyên đề phương pháp tọa độ trong không gian – Nguyễn Tăng Vũ: Chủ đề 1 . Phương trình tổng quát của đường thẳng. 1. Phương trình tổng quát của đường thẳng. 2. Vị trí tương đối của hai đường thẳng. 3. Bài tập. Chủ đề 2 . Phương trình tham số của đường thẳng. 1. Lý thuyết. 2. Ví dụ. 3. Bài tập. Chủ đề 3 . khoảng cách – góc. 1. Khoảng cách từ một điểm đến đường thẳng. 2. Góc giữa hai đường thẳng. 3. Bài tập. [ads] Chủ đề 4 . Phương trình đường tròn. 1. Phương trình đường tròn. 2. Phương trình tiếp tuyến. 3. Bài tập. Chủ đề 5 . Phương trình chính tắc của elip. 1. Tóm tắt lý thuyết. 2. Bài tập. Chủ đề 6 . Bài tập tổng hợp. 1. Bài tập về tam giác – tứ giác. 2. Bài tập đường tròn. 3. Bài tập tổng hợp.
Tổng ôn tập TN THPT 2020 môn Toán Phương trình đường thẳng
Tài liệu gồm 45 trang, được tổng hợp và biên soạn bởi thầy giáo Nguyễn Bảo Vương, tuyển chọn các câu hỏi và bài tập trắc nghiệm chuyên đề phương trình đường thẳng; có đáp án và lời giải chi tiết, giúp học sinh tổng ôn kiến thức để chuẩn bị cho kỳ thi tốt nghiệp THPT 2020 môn Toán. Khái quát nội dung tài liệu tổng ôn tập TN THPT 2020 môn Toán: Phương trình đường thẳng: Vấn đề 1. Xác định các yếu tố cơ bản của đường thẳng. Vấn đề 2. Viết phương trình đường thẳng. Vấn đề 3. Khoảng cách và góc. Vấn đề 4. Vị trí tương đối.
Tổng ôn tập TN THPT 2020 môn Toán Phương trình mặt phẳng
Tài liệu gồm 35 trang, được tổng hợp và biên soạn bởi thầy giáo Nguyễn Bảo Vương, tuyển chọn các câu hỏi và bài tập trắc nghiệm chuyên đề phương trình mặt phẳng; có đáp án và lời giải chi tiết, giúp học sinh tổng ôn kiến thức để chuẩn bị cho kỳ thi tốt nghiệp THPT 2020 môn Toán. Khái quát nội dung tài liệu tổng ôn tập TN THPT 2020 môn Toán: Phương trình mặt phẳng: Vấn đề 1. Xác định yếu tố cơ bản của mặt phẳng. Vấn đề 2. Khoảng cách từ điểm đến mặt phẳng, từ mặt phẳng đến mặt phẳng. Vấn đề 3. Góc của hai mặt phẳng. Vấn đề 4. Viết phương trình mặt phẳng.