Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề làm quen với xác suất của biến cố lớp 7 môn Toán

Nội dung Chuyên đề làm quen với xác suất của biến cố lớp 7 môn Toán Bản PDF - Nội dung bài viết Chuyên đề làm quen với xác suất của biến cố lớp 7 môn ToánPHẦN I. TÓM TẮT LÍ THUYẾTPHẦN II. CÁC DẠNG BÀIDạng 1. Xác suất của biến cố đồng khả năng xảy raDạng 2. Áp dụng công thức tính xác suấtDạng 3. Xác suất của biến cố chắc chắn, không thểDạng 4. Xác suất của biến cố ngẫu nhiênPHẦN III. BÀI TẬP TỰ LUYỆN Chuyên đề làm quen với xác suất của biến cố lớp 7 môn Toán Tài liệu này bao gồm 44 trang, chia thành hai phần chính: Tóm tắt lí thuyết và Hướng dẫn giải các dạng bài tập chuyên đề làm quen với xác suất của biến cố trong chương trình môn Toán lớp 7. PHẦN I. TÓM TẮT LÍ THUYẾT Trong phần này, chúng ta sẽ được tóm tắt lý thuyết về xác suất của biến cố đồng khả năng xảy ra và các quy tắc cơ bản trong tính toán xác suất. PHẦN II. CÁC DẠNG BÀI Phần này chứa các dạng bài tập thực hành nhằm giúp học sinh hiểu rõ hơn về xác suất của biến cố trong các tình huống thực tế. Các dạng bài bao gồm: Dạng 1. Xác suất của biến cố đồng khả năng xảy ra Nếu chỉ xảy ra A hoặc B (cả A B là hai biến cố đồng khả năng xảy ra), thì xác suất của chúng bằng nhau và bằng 0,5. Trong trường hợp có k biến cố đồng khả năng và chỉ xảy ra duy nhất một biến cố trong số đó, xác suất của mỗi biến cố đó đều bằng 1/k. Dạng 2. Áp dụng công thức tính xác suất Trong dạng này, chúng ta sẽ học cách tính xác suất bằng cách đếm số phần tử của tất cả các trường hợp có thể xảy ra, sau đó tính số kết quả thỏa mãn yêu cầu bài toán và áp dụng công thức tính xác suất. Dạng 3. Xác suất của biến cố chắc chắn, không thể Trình bày và phân tích khả năng xảy ra của từng biến cố bằng cách xác định xem biến cố đó có khả năng xảy ra (a = 1) hay không thể xảy ra (a = 0). Dạng 4. Xác suất của biến cố ngẫu nhiên Bước 1: Xác định số lần xảy ra của biến cố đang xét. Bước 2: Xác định số biến cố của thực nghiệm. Bước 3: Xác suất của biến cố là tỉ số giữa số lần xảy ra của biến cố và số biến cố của thực nghiệm. PHẦN III. BÀI TẬP TỰ LUYỆN Phần này chứa các bài tập tự luyện giúp học sinh rèn luyện kỹ năng tính toán và áp dụng lý thuyết xác suất vào các bài tập cụ thể.

Nguồn: sytu.vn

Đọc Sách

Chuyên đề quan hệ giữa ba cạnh của một tam giác, bất đẳng thức tam giác
Nội dung Chuyên đề quan hệ giữa ba cạnh của một tam giác, bất đẳng thức tam giác Bản PDF - Nội dung bài viết Chuyên đề quan hệ giữa ba cạnh của một tam giác, bất đẳng thức tam giácI. LÝ THUYẾT TRỌNG TÂMII. CÁC DẠNG BÀI TẬPDạng 1: Sử dụng điều kiện tồn tại tam giác dựa vào độ dài ba cạnhDạng 2: Chứng minh các bất đẳng thức về độ dài Chuyên đề quan hệ giữa ba cạnh của một tam giác, bất đẳng thức tam giác Chuyên đề này bao gồm 08 trang tài liệu, cung cấp kiến thức về lý thuyết trọng tâm, các dạng toán và bài tập liên quan đến quan hệ giữa ba cạnh của tam giác và bất đẳng thức tam giác. Tài liệu cung cấp đáp án và lời giải chi tiết, giúp học sinh lớp 7 hiểu rõ hơn về chương trình Toán lớp 7 phần Hình học chương 3: Quan hệ giữa các yếu tố trong tam giác và các đường đồng quy trong tam giác. Mục tiêu của chuyên đề là: Kiến thức: Phát biểu được định lí và hệ quả của bất đẳng thức tam giác. Kỹ năng: Vận dụng được định lí và hệ quả của bất đẳng thức tam giác trong các bài toán. I. LÝ THUYẾT TRỌNG TÂM Trong phần này, chúng ta sẽ tìm hiểu về trọng tâm của tam giác và vai trò của nó trong quan hệ giữa ba cạnh của tam giác. II. CÁC DẠNG BÀI TẬP Dạng 1: Sử dụng điều kiện tồn tại tam giác dựa vào độ dài ba cạnh Để xác định tam giác có tồn tại hay không, chúng ta cần áp dụng bất đẳng thức tam giác và xét các trường hợp khác nhau. Dạng 2: Chứng minh các bất đẳng thức về độ dài Trong dạng này, chúng ta sẽ sử dụng bất đẳng thức tam giác và thực hiện các biến đổi phù hợp để chứng minh các bất đẳng thức liên quan đến độ dài các cạnh của tam giác. Chúc các bạn học sinh lớp 7 học tập hiệu quả và thành công trong việc giải các bài toán liên quan đến quan hệ giữa ba cạnh của tam giác và bất đẳng thức tam giác!
Chuyên đề quan hệ giữa đường vuông góc và đường xiên, đường xiên và hình chiếu
Nội dung Chuyên đề quan hệ giữa đường vuông góc và đường xiên, đường xiên và hình chiếu Bản PDF - Nội dung bài viết Chuyên đề Quan Hệ giữa Đường Vuông Góc và Đường Xiên, Đường Xiên và Hình Chiếu Chuyên đề Quan Hệ giữa Đường Vuông Góc và Đường Xiên, Đường Xiên và Hình Chiếu Trong tài liệu này, chúng ta sẽ tìm hiểu về quan hệ giữa đường vuông góc và đường xiên, đường xiên và hình chiếu. Đầu tiên, chúng ta sẽ được học về lý thuyết trọng tâm, để hiểu rõ về các khái niệm cơ bản như đường vuông góc, đường xiên, hình chiếu. Sau đó, chúng ta sẽ tiếp cận với các dạng bài tập thực hành. Đầu tiên là dạng bài tập so sánh hai đường xiên hoặc hai hình chiếu. Chúng ta sẽ áp dụng định lí để so sánh và xác định đường xiên nào lớn hơn, hình chiếu nào lớn hơn. Đặc biệt, chúng ta cũng sẽ tìm hiểu về quan hệ giữa đường vuông góc và đường xiên. Sử dụng định lí "Đường vuông góc ngắn hơn mọi đường xiên", chúng ta sẽ biết cách áp dụng để giải các bài tập liên quan đến quan hệ này. Với mục tiêu giúp học sinh lớp 7 hiểu rõ hơn về chương trình Toán lớp 7 phần Hình học, tài liệu này sẽ hỗ trợ các em phát triển kiến thức và kỹ năng cần thiết để giải quyết các bài tập phức tạp về quan hệ giữa đường vuông góc và đường xiên, đường xiên và hình chiếu.
Chuyên đề quan hệ giữa góc và cạnh đối diện trong một tam giác
Nội dung Chuyên đề quan hệ giữa góc và cạnh đối diện trong một tam giác Bản PDF - Nội dung bài viết Chuyên Đề: Quan Hệ Giữa Góc Và Cạnh Đối Diện Trong Tam GiácLí Thuyết Trọng TâmCác Dạng Bài TậpDạng 1: So Sánh Hai Góc Trong Một Tam GiácDạng 2: So Sánh Hai Cạnh Trong Một Tam Giác Chuyên Đề: Quan Hệ Giữa Góc Và Cạnh Đối Diện Trong Tam Giác Trong chuyên đề này, chúng ta sẽ tìm hiểu về quan hệ giữa góc và cạnh đối diện trong một tam giác. Chủ đề được trình bày trên 10 trang tài liệu, bao gồm lý thuyết về trọng tâm, các dạng toán và bài tập liên quan. Mục tiêu của chuyên đề là giúp học sinh lớp 7 hiểu rõ về định lí về quan hệ giữa góc và cạnh đối diện trong tam giác, và áp dụng kiến thức đó vào việc so sánh độ dài các cạnh và số đo góc của tam giác. Chúng ta cũng sẽ phát triển kĩ năng vận dụng các định lí để giải quyết các bài toán, và biết cách vẽ hình theo đúng yêu cầu bài toán để nhận biết các tính chất qua hình vẽ. Lí Thuyết Trọng Tâm Trọng tâm trong một tam giác là một điểm giao điểm của các đường trung tuyến. Chúng ta sẽ tìm hiểu về tính chất và cách tính toán trọng tâm trong tam giác. Các Dạng Bài Tập Dạng 1: So Sánh Hai Góc Trong Một Tam Giác Để so sánh hai góc trong một tam giác, chúng ta có thể so sánh hai cạnh đối diện với hai góc đó. Định lí cơ bản: "Trong một tam giác, góc có cạnh đối diện lớn hơn thì lớn hơn". Hãy thực hành và làm bài tập liên quan. Dạng 2: So Sánh Hai Cạnh Trong Một Tam Giác Để so sánh hai cạnh trong một tam giác, chúng ta có thể so sánh hai góc đối diện với hai cạnh đó. Định lí quan trọng: "Trong một tam giác, cạnh đối diện với góc lớn hơn thì lớn hơn". Hãy thực hành và vận dụng vào các bài tập. Chuyên đề này sẽ giúp bạn hiểu rõ hơn về quan hệ giữa góc và cạnh đối diện trong tam giác và phát triển kĩ năng giải quyết bài toán hình học một cách chắc chắn. Hãy cùng tham gia và đắt những kiến thức bổ ích từ chuyên đề này.
Chuyên đề các trường hợp bằng nhau của tam giác vuông
Nội dung Chuyên đề các trường hợp bằng nhau của tam giác vuông Bản PDF - Nội dung bài viết Tài liệu chuyên đề các trường hợp bằng nhau của tam giác vuông Tài liệu chuyên đề các trường hợp bằng nhau của tam giác vuông Tài liệu này bao gồm 10 trang, cung cấp kiến thức về trọng tâm, các dạng toán và bài tập liên quan đến các trường hợp bằng nhau của tam giác vuông. Được thiết kế để hỗ trợ học sinh lớp 7 trong quá trình học tập chương trình Toán lớp 7 phần Hình học chương 2: Tam giác. Mục tiêu của tài liệu: Kiến thức: Nắm được 4 trường hợp bằng nhau của tam giác vuông. Vận dụng định lí Pythagore để chứng minh trường hợp cạnh huyền - cạnh góc vuông. Kỹ năng: Vận dụng các trường hợp bằng nhau của tam giác vuông để phát hiện và chứng minh hai tam giác vuông bằng nhau. Chứng minh được hai đoạn thẳng bằng nhau, hai góc bằng nhau. I. Lý thuyết trọng tâm: Trường hợp 1. Cạnh góc vuông - cạnh góc vuông: Nếu hai cạnh góc vuông của tam giác vuông này lần lượt bằng hai cạnh góc vuông của tam giác vuông kia thì hai tam giác vuông đó bằng nhau. Trường hợp 2. Cạnh góc vuông - góc nhọn kề: Nếu một cạnh góc vuông và một góc nhọn kề cạnh ấy của tam giác vuông này bằng một cạnh góc vuông và một góc nhọn kề cạnh ấy của tam giác vuông kia thì hai tam giác vuông đó bằng nhau. Trường hợp 3. Cạnh huyền - góc nhọn: Nếu cạnh huyền và một góc nhọn của tam giác vuông này bằng cạnh huyền và một góc nhọn của tam giác vuông kia thì hai tam giác vuông đó bằng nhau. Trường hợp 4. Cạnh huyền - cạnh góc vuông: Nếu cạnh huyền và một cạnh góc vuông của tam giác vuông này bằng cạnh huyền và một cạnh góc vuông của tam giác vuông kia thì hai tam giác vuông đó bằng nhau. II. Các dạng bài tập: Dạng 1: Chứng minh hai tam giác vuông bằng nhau. Dạng 2: Chứng minh hai đoạn thẳng bằng nhau, hai góc bằng nhau.