Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi chọn học sinh giỏi lớp 9 môn Toán năm 2022 2023 sở GD ĐT Quảng Trị

Nội dung Đề thi chọn học sinh giỏi lớp 9 môn Toán năm 2022 2023 sở GD ĐT Quảng Trị Bản PDF - Nội dung bài viết Đề thi chọn học sinh giỏi Toán lớp 9 năm 2022 – 2023 sở GD&ĐT Quảng Trị Đề thi chọn học sinh giỏi Toán lớp 9 năm 2022 – 2023 sở GD&ĐT Quảng Trị Chào quý thầy, cô và các em học sinh lớp 9! Hôm nay, Sytu xin giới thiệu đến mọi người đề thi chọn học sinh giỏi văn hóa cấp tỉnh môn Toán lớp 9 THCS năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Quảng Trị. Kỳ thi sẽ diễn ra vào thứ Tư ngày 15 tháng 03 năm 2023. Trích dẫn Đề thi chọn học sinh giỏi Toán lớp 9 năm 2022 – 2023 sở GD&ĐT Quảng Trị: 1. Cho a, b, c là các số nguyên đôi một khác nhau. Chứng minh rằng trong ba phương trình sau, có ít nhất một phương trình có nghiệm: x² – 2ax + bc + 1 = 0, x² – 2bx + ca + 1 = 0, x² – 2cx + ab + 1 = 0. 2. Cho các số nguyên x, y thỏa mãn 2×2 − y2 = 1. Chứng minh xy(x2 − y2) chia hết cho 40. 3. Một giải cầu lông có n (n ≥ 2) vận động viên tham gia thi đấu theo thể thức vòng tròn một lượt (hai vận động viên bất kỳ thi đấu với nhau đúng một trận, không có kết quả hòa). Chứng minh rằng tổng các bình phương số trận thắng và tổng các bình phương số trận thua của các vận động viên là bằng nhau. 4. Cho tam giác nhọn ABC (AB < AC) nội tiếp đường tròn (O), AD là đường cao (D thuộc BC). Gọi E, F lần lượt là hình chiếu của D trên AC và AB. a) Chứng minh tứ giác BCEF nội tiếp. b) Đường tròn đường kính AD cắt (O) tại điểm thứ hai là M (M khác A). Chứng minh MD là phân giác của góc FMC. c) Chứng minh đường thẳng MD, đường trung trực của BC và đường trung trực của EF đồng quy.

Nguồn: sytu.vn

Đọc Sách

Đề học sinh giỏi cấp tỉnh lớp 9 môn Toán năm 2022 2023 sở GD ĐT Nghệ An
Nội dung Đề học sinh giỏi cấp tỉnh lớp 9 môn Toán năm 2022 2023 sở GD ĐT Nghệ An Bản PDF - Nội dung bài viết Đề học sinh giỏi cấp tỉnh lớp 9 môn Toán Nghệ An 2022-2023 Đề học sinh giỏi cấp tỉnh lớp 9 môn Toán Nghệ An 2022-2023 Sytu xin gửi đến quý thầy cô và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp tỉnh môn Toán lớp 9 năm học 2022-2023 của Sở Giáo dục và Đào tạo tỉnh Nghệ An (Bảng A và B); kỳ thi sẽ diễn ra vào Chủ Nhật ngày 12 tháng 02 năm 2023. Một số câu hỏi trích dẫn từ đề học sinh giỏi cấp tỉnh Toán lớp 9 Nghệ An 2022-2023: + Cho các số thực dương x, y, z thỏa mãn x2 - y2 + z2 = xy + 3yz + zx. Hãy tìm giá trị lớn nhất của biểu thức P. + Trên một khu đất hình chữ nhật kích thước 100m x 120m, người ta muốn xây một sân bóng nhân tạo có nền đất hình chữ nhật kích thước 25m x 35m và 9 bồn hoa hình tròn đường kính 5m. Chứng minh rằng luôn tìm được một nền đất kích thước 25m x 35m để xây sân bóng dù đã xây trước 9 bồn hoa ở các vị trí như thế nào. Hãy tham gia thử thách và chinh phục các thí nghiệm thú vị từ bài toán này!
Đề học sinh giỏi cấp tỉnh lớp 9 môn Toán năm 2022 2023 sở GD ĐT Bắc Ninh
Nội dung Đề học sinh giỏi cấp tỉnh lớp 9 môn Toán năm 2022 2023 sở GD ĐT Bắc Ninh Bản PDF - Nội dung bài viết Đề thi học sinh giỏi Toán lớp 9 cấp tỉnh Bắc Ninh năm 2022-2023 Đề thi học sinh giỏi Toán lớp 9 cấp tỉnh Bắc Ninh năm 2022-2023 Chào đón quý thầy, cô và các em học sinh lớp 9! Sytu hân hạnh mang đến đề thi chọn học sinh giỏi cấp tỉnh môn Toán lớp 9 năm học 2022-2023 của sở GD&ĐT Bắc Ninh. Kỳ thi sẽ diễn ra vào thứ Sáu, ngày 10 tháng 02 năm 2023.
Đề HSG lớp 9 môn Toán vòng 2 năm 2022 2023 trường THCS Nguyễn Tri Phương TT Huế
Nội dung Đề HSG lớp 9 môn Toán vòng 2 năm 2022 2023 trường THCS Nguyễn Tri Phương TT Huế Bản PDF - Nội dung bài viết Đề HSG Toán lớp 9 vòng 2 năm 2022 - 2023 Trường THCS Nguyễn Tri Phương TT Huế Đề HSG Toán lớp 9 vòng 2 năm 2022 - 2023 Trường THCS Nguyễn Tri Phương TT Huế Chào mừng đến với đề thi chọn học sinh giỏi môn Toán lớp 9 vòng 2 năm học 2022 - 2023 của trường THCS Nguyễn Tri Phương, tỉnh Thừa Thiên Huế. Đề thi này sẽ giúp các em học sinh ôn tập và kiểm tra kiến thức Toán của mình thông qua các bài toán thú vị và thách thức. 1. Chứng minh rằng không tồn tại cặp số nguyên x, y nào thỏa mãn phương trình: 4x² + 9y² = 1987 + 13xy. 2. Đề bài cho một số chính phương A có 4 chữ số. Nếu cộng thêm vào mỗi chữ số của A với 3 ta được số chính phương B cũng có 4 chữ số. Hãy tìm giá trị của A và giải thích cách làm. 3. Xét đường tròn (O;R), chọn điểm A sao cho OA = 2R. Gọi B, C lần lượt là giao điểm của đường tròn (O) với đường tròn đường kính OA. Đường thẳng Ax không trùng AO cắt (O) tại D và E (AD < AE). Gọi F là trung điểm của DE. Chứng minh rằng: 3.1. FB + FC = FA 3.2. Nếu FB < FC thì FB < BD. 4. Tam giác nhọn ABC có ABC = 60° nội tiếp đường tròn (O;R). Đường thẳng Ox vuông góc AO cắt AC, AB lần lượt tại D và E. 4.1. Chứng minh 4 điểm B, C, D, E cùng thuộc một đường tròn. 4.2. Tính bán kính đường tròn ngoại tiếp tam giác ODC theo R. Chúc quý thầy cô giáo và các em học sinh lớp 9 của trường THCS Nguyễn Tri Phương TT Huế ôn tập hiệu quả và giải bài tập thật tốt. Hy vọng đề thi này sẽ giúp các em phát triển và thành công trong học tập.
Đề học sinh giỏi Toán THCS năm 2022 2023 phòng GD ĐT Lương Sơn Hòa Bình
Nội dung Đề học sinh giỏi Toán THCS năm 2022 2023 phòng GD ĐT Lương Sơn Hòa Bình Bản PDF - Nội dung bài viết Đề thi chọn học sinh giỏi Toán THCS năm 2022-2023 phòng GD&ĐT Lương Sơn Hòa Bình Đề thi chọn học sinh giỏi Toán THCS năm 2022-2023 phòng GD&ĐT Lương Sơn Hòa Bình Chào quý thầy cô giáo và các em học sinh lớp 9, mùa thi học sinh giỏi môn Toán cấp THCS năm học 2022-2023 của phòng Giáo dục và Đào tạo huyện Lương Sơn, tỉnh Hòa Bình đã sắp đến. Kỳ thi sẽ diễn ra vào ngày ... tháng 02 năm 2023. Dưới đây là một số câu hỏi trích từ Đề học sinh giỏi Toán THCS năm 2022-2023 do phòng GD&ĐT Lương Sơn - Hòa Bình ra: 1. Có hai can đựng dầu, can thứ nhất đang chứa 48 lít và can thứ hai đang chứa 32 lít. Nếu rót từ can thứ nhất sang cho đầy can thứ hai thì lượng dầu trong can thứ nhất chỉ còn lại một nửa thể tích của nó. Nếu rót từ can thứ hai sang cho đầy can thứ nhất thì lượng dầu trong can thứ hai chỉ còn lại một phần ba thể tích của nó. Hãy tính thể tích của mỗi can. 2. Cho đường thẳng y = (m - 2)x - 2m + 1: - Chứng minh rằng đường thẳng này luôn đi qua một điểm cố định với mọi giá trị của m. - Tìm m để khoảng cách từ gốc tọa độ đến đường thẳng có giá trị lớn nhất. - Tìm m để đường thẳng tạo với các trục tọa độ tam giác có diện tích bằng 1/2. 3. Đoạn thẳng AB. Trên nửa mặt phẳng bờ AB, vẽ nửa đường tròn đường kính AB và các tiếp tuyến Ax, By. Qua điểm M thuộc nửa đường tròn này, kẻ tiếp tuyến cắt Ax, By tại C và D. Gọi N là giao điểm của AD và BC. Hãy: - Chứng minh rằng MN vuông góc với AB. - Chứng minh rằng AC = CE. - Chứng minh rằng BM.BE = AK.AD. Hy vọng rằng các em có thể làm tốt bài thi và đạt kết quả cao trong kỳ thi sắp tới. Chúc quý thầy cô giáo và các em học sinh lớp 9 luôn thành công và nỗ lực trong hành trình học tập của mình!