Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Phân dạng và bài tập phương pháp tọa độ trong không gian

Tài liệu gồm 146 trang, được biên soạn bởi thầy giáo Hoàng Tuyên và thầy giáo Lê Minh Tâm, phân dạng toán và tuyển chọn bài tập trắc nghiệm chuyên đề phương pháp tọa độ trong không gian, có đáp án và lời giải chi tiết; giúp học sinh khối 12 rèn luyện khi học chương trình Hình học 12 chương 3 và ôn thi tốt nghiệp THPT môn Toán. CHUYÊN ĐỀ 1 . HỆ TRỤC TỌA ĐỘ OXYZ. + Dạng toán 1. Tìm tọa độ điểm, tọa độ véctơ thỏa điều kiện. + Dạng toán 2. Tính độ dài đoạn thẳng, véctơ. + Dạng toán 3. Xét sự cùng phương, sự đồng phẳng. + Dạng toán 4. Bài toán về tích vô hướng, góc và ứng dụng. + Dạng toán 5. Bài toán về tích có hướng và ứng dụng. CHUYÊN ĐỀ 2 . PHƯƠNG TRÌNH MẶT CẦU. + Dạng toán 1. Tìm tâm – bán kính – điều kiện xác định mặt cầu. + Dạng toán 2. Phương trình mặt cầu biết tâm, dễ tính bán kính. + Dạng toán 3. Phương trình mặt cầu biết hai đầu mút của đường kính. + Dạng toán 4. Phương trình mặt cầu ngoại tiếp tứ diện. + Dạng toán 5. Phương trình mặt cầu qua nhiều điểm và thỏa điều kiện. + Dạng toán 6. Phương trình mặt cầu biết tâm, tiếp xúc với mặt phẳng. + Dạng toán 7. Phương trình mặt cầu biết tâm và đường tròn trên nó. + Dạng toán 8. Phương trình mặt cầu biết tâm và điều kiện của dây cung. + Dạng toán 9. Phương trình mặt cầu biết tâm thuộc d, thỏa điều kiện. CHUYÊN ĐỀ 3 . PHƯƠNG TRÌNH MẶT PHẲNG. + Dạng toán 1. Tìm véctơ pháp tuyến, các vấn đề về lý thuyết. + Dạng toán 2. Phương trình mặt phẳng trung trực của đoạn thẳng. + Dạng toán 3. Phương trình mặt phẳng qua một điểm, dễ tìm véctơ pháp tuyến (không dùng tích có hướng). + Dạng toán 4. Phương trình mặt phẳng qua một điểm, véctơ pháp tuyến tìm bằng tích có hướng. + Dạng toán 5. Phương trình mặt phẳng qua một điểm, tiếp xúc với mặt cầu. + Dạng toán 6. Phương trình mặt phẳng qua hai điểm, véctơ pháp tuyến tìm bằng tích có hướng. + Dạng toán 7. Phương trình mặt phẳng qua ba điểm không thẳng hàng. + Dạng toán 8. Phương trình mặt phẳng vuông góc với đường thẳng. + Dạng toán 9. Phương trình mặt phẳng qua một điểm và chứa đường thẳng. + Dạng toán 10. Phương trình mặt phẳng chứa một đường thẳng, thỏa điều kiện với đường thẳng khác. + Dạng toán 11. Phương trình mặt phẳng liên quan đường thẳng và mặt cầu (VDC). + Dạng toán 12. Phương trình mặt phẳng song song với mặt phẳng, thỏa điều kiện. CHUYÊN ĐỀ 4 . PHƯƠNG TRÌNH ĐƯỜNG THẲNG. + Dạng toán 1. Tìm véctơ chỉ phương, các vấn đề về lý thuyết. + Dạng toán 2. Phương trình đường thẳng qua một điểm, dễ tìm véctơ chỉ phương (không dùng tích có hướng). + Dạng toán 3. Phương trình đường thẳng qua một điểm, véctơ chỉ phương tìm bằng tích có hướng. + Dạng toán 4. Phương trình đường thẳng qua một điểm, cắt đường này, có liên hệ với đường kia. + Dạng toán 5. Phương trình đường thẳng qua một điểm, cắt d, có liên hệ với mặt phẳng (P). + Dạng toán 6. Phương trình đường thẳng qua một điểm, cắt d1 lẫn d2 hoặc vuông góc d2. + Dạng toán 7. Phương trình đường thẳng nằm trong (P), vừa cắt vừa vuông góc với d. + Dạng toán 8. Giao tuyến của hai mặt phẳng. + Dạng toán 9. Đường vuông góc chung của hai đường thẳng chéo nhau. + Dạng toán 10. Hình chiếu vuông góc của d lên (P).

Nguồn: toanmath.com

Đọc Sách

Tổng hợp câu hỏi trắc nghiệm hay chương tọa độ không gian - Nguyễn Quang Hưng, Nguyễn Thành Tiến
Tài liệu gồm 32 trang tổng hợp câu hỏi trắc nghiệm hay và khó chương tọa độ không gian, các bài tập được trích trong đây chủ yếu là những bài được lấy trong các đề thi thử, bài giải được làm dưới cách chi tiết. Trích dẫn tài liệu : + Trong không gian với hệ tọa độ Oxyz, cho ba điểm A(1; 1; 0), B (0; 1; 1), C (1; 0; 1). Tìm hợp tất cả các điểm M trên mặt phẳng Oxz sao cho vtMA.vtMB + vtMC^2 = 2. A. Một đường thẳng B. Một đường tròn C. Một đường elip D. Không xác định được [ads] + Trong không gian với hệ tọa độ xyz, cho điểm A(1;2; -3) và cắt mặt phẳng (P): 2x + 2y – z + 9 = 0. Đường thẳng đi qua A và có véctơ chỉ phương u (3;4; -4) cắt (P) tại B. Điểm M thay đổi trong (P) sao cho M luôn nhìn đoạn AB dưới một góc 90 độ. Khi độ dài MB lớn nhất, đường thẳng MB đi qua điểm nào trong các điểm sau? A. J (-3; 2; 7)   B. H(-2; -1;3) C. K (3; 0; 15)   D. I (-1; -2; 3) + Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S): x^2 + (y – 4)^2 + z^2 = 5. Tìm tọa độ điểm A thuộc tia Oy. Biết rằng ba mặt phẳng phân biệt qua A và đôi một vuông góc cắt mặt cầu theo thiết diện là ba hình tròn có tổng diện tích là 11π.
Chuyên đề trắc nghiệm phương pháp tọa độ trong không gian - Ngô Nguyên
Tài liệu gồm 100 trang phân dạng và tuyển chọn các bài tập trắc nghiệm chuyên đề phương pháp tọa độ trong không gian. Nội dung tài liệu gồm: + Chủ đề 1. Các phép toán về tọa độ véc tơ. Xác định điểm – một số tính chất hình học Dạng 1: Chứng minh A, B, C là ba đỉnh tam giác Dạng 2: Tìm D sao cho ABCD là hình bình hành Dạng 3: Chứng minh ABCD là một tứ diện + Chủ đề 2. Phương trình mặt cầu Dạng 1: Biết trước tâm I và bán kính R Dạng 2: Mặt cầu đường kính AB Dạng 3: Mặt cầu tâm I tiếp xúc mặt phẳng (α) Dạng 4: Mặt cầu ngoại tiếp tứ diện ABCD Dạng 5: Mặt cầu đi qua A, B, C và tâm I thuộc (α) Dạng 6: Mặt phẳng tiếp xúc mặt cầu tại A [ads] + Chủ đề 3. Phương trình mặt phẳng Dạng 1. Mặt phẳng (α) đi qua M và có vectơ pháp tuyến n Dạng 2. Mặt phẳng qua 3 điểm A, B, C Dạng 3. Mặt phẳng trung trực đoạn AB Dạng 4. Mặt phẳng (α) qua M và vuông góc đường thẳng d (hoặc AB) Dạng 5. Mp (α) qua M và song song (α): Ax + By + Cz + D = 0 Dạng 6. Mp(α) chứa (d) và song song (d’) Dạng 7. Mp(α) qua M, N và vuông góc (β) Dạng 8. Mp(α) chứa (d) và đi qua M Dạng 9. Mp(α) đi qua M và vuông góc với hai mặt phẳng (β), (γ) cho trước Dạng 10. Mặt Phẳng (α) chứa hai đường thẳng Δ1, Δ2 cắt nhau + Chủ đề 4. Phương trình đường thẳng Dạng 1. Viết phương trình đường thẳng (d) đi qua M và có vectơ chỉ phương u Dạng 2. Đường thẳng d qua A và song song (α) Dạng 3. Đường thẳng (d) qua A và vuông góc mp(α) Dạng 4. PT d’ hình chiếu của d lên (α) Dạng 5. Đường thẳng (d) qua A và vuông góc 2 đường thẳng d1 và d2 Dạng 6. Phương trình đường vuông góc chung của d1 và d2 Dạng 7. PT d qua A và d cắt d1, d2 Dạng 8. PT d // Δ và cắt d1, d2 Dạng 9. PT d qua A và vuông góc với d1, cắt d2 Dạng 10: PT d ⊥ (P) cắt d1, d2
111 câu hỏi trắc nghiệm về mặt phẳng trong Oxyz - Hứa Lâm Phong
Tài liệu gồm 12 trang với 111 câu hỏi trắc nghiệm về mặt phẳng trong Oxyz do thầy Hứa Lâm Phong biên soạn. Trích dẫn tài liệu : + Trong không gian Oxyz, cho mặt phẳng (P): 2x – 2y – z – 4 = 0 và mặt cầu (S): x^2 + y^2 + z^2 – 2x – 4y – 6z – 11 = 0. Mặt phẳng (P) cắt mặt cầu (S) theo một đường tròn có chu vi là? + Cho mặt phẳng (P): 3x + 4y + 12 = 0 và mặt cầu (S): x^2 + y^2 + (z – 2)^2 = 1. Khẳng định nào sau đây là đúng? A. (P) đi qua tâm của mặt cầu (S) B. (P) tiếp xúc với mặt cầu (S) [ads] C. (P) cắt mặt cầu (S) theo một đường tròn và mặt phẳng (P) không qua tâm của (S) D. (P) không có điểm chung với mặt cầu (S) + Khẳng định nào sau đây sai ? A. Nếu n là vectơ pháp tuyến của mặt phẳng thì kn với k khác 0 cũng là vectơ pháp tuyến của mặt phẳng đó. B. Mặt phẳng (P) có phương trình tổng quát là ax + by + cz + d = 0 với a, b, c không đồng thời bằng 0 thì nó có một vectơ pháp tuyến là n(a; b; c). C. Nếu a, b có giá song song hoặc nằm trong mặt phẳng thì tích có hướng của hai vectơ a, b gọi là vectơ pháp tuyến của mặt phẳng. D. Hai mặt phẳng vuông góc với nhau khi và chỉ khi hai vectơ pháp tuyến tương ứng của chúng vuông góc với nhau.
100 câu hỏi trắc nghiệm về tọa độ điểm trong Oxyz - Hứa Lâm Phong
Tài liệu gồm 9 trang với 100 câu hỏi trắc nghiệm về tọa độ điểm trong Oxyz do thầy Hứa Lâm Phong biên soạn. Trích dẫn tài liệu : 1. Trong không gian Oxyz, cho tam giác ABC với A(1;-4;2), B(-3;2;1), C(3;-1;4). Khi đó trọng tâm G của tam giác ABC là? 2. Trong không gian với hệ tọa độ Oxyz, điểm nào sau đây nằm trên trục Oz? 3. Cho ba điểm A(2;0;2), B(1;2;3), C(x;y-3;7). Biết rằng x; y là giá trị để ba điểm A,B,C thẳng hàng. Khi đó tổng x + y bằng? [ads]