Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề Toán tuyển sinh lớp 10 năm 2019 trường chuyên ĐHSP Hà Nội (Đề chung)

Thứ Ba ngày 28 tháng 05 năm 2019, trường Trung học Phổ thông chuyên Đại học Sư phạm Hà Nội tổ chức kỳ thi tuyển sinh vào lớp 10 môn Toán năm học 2019 – 2020, nhằm tuyển chọn các em học sinh đạt yêu cầu về mặt kiến thức, để chuẩn bị cho năm học mới. Đề Toán tuyển sinh lớp 10 năm 2019 trường chuyên ĐHSP Hà Nội (Đề chung) được dùng cho mọi thí sinh thi vào trường, đề gồm 1 trang với 5 bài toán, học sinh làm bài thi trong khoảng thời gian 120 phút. Trích dẫn đề Toán tuyển sinh lớp 10 năm 2019 trường chuyên ĐHSP Hà Nội (Đề chung) : + Trên quãng đường AB dài 20km, tại cùng một thời điểm, bạn An đi bộ từ A đến B và bạn Bình đi bộ từ B về A. Sau 2 giờ kể từ lúc xuất phát, An và Bình gặp nhau tại C và cùng nghỉ tại C 15 phút (vận tốc của An trên quãng đường AC không thay đổi, vận tốc của Bình trên quãng đường BC không thay đổi). Sau khi nghỉ, An đi tiếp đến B với vận tốc nhỏ hơn vận tốc của An trên quãng đường AC là 1 km/h, Bình đi tiếp đến A với vận tốc lớn hơn vận tốc của Bình trên quãng đường BC là 1 km/h. Biết rằng An đến B sớm hơn so với Bình đến A là 48 phút. Hỏi vận tốc của An trên quãng đường AC là bao nhiêu? [ads] + Cho đường tròn (O) bán kính R ngoại tiếp tam giác ABC có ba góc nhọn. Gọi AA1, BB1, CC1 là các đường cao của tam giác ABC. Đường thẳng A1C1 cắt đường tròn (O) tại A’ và C’ (A1 nằm giữa A’ và C1). Các tiếp tuyến của đường tròn (O) tại A’ và C’ cắt nhau tại B’. 1. Gọi H là trực tâm của tam giác ABC. Chứng minh: HC1.A1C=A1C1.HB1. 2. Chứng minh ba điểm B,B’,O thằng hàng. 3. Khi tam giác ABC là tam giác đều. Hãy tính A’C’ theo R. + Cho các đa thức: P(x) = x^2 + ax + b, Q(x) = x^2 + cx + d với a, b, c, d là các số thực. 1. Tìm a và b để 1 và a là nghiệm của phương trình P(x) = 0. 2. Giả sử phương trình P(x) = 0 có hai nghiệm phân biệt x1, x2 và phương trình Q(x) = 0 có hai nghiệm phân biệt x3, x4 sao cho P(x3) + P(x4) = Q(x1) + Q(x2). Chứng minh: |x2 – x1| = |x4 – x3|.

Nguồn: toanmath.com

Đọc Sách

Đề tuyển sinh lớp 10 môn Toán năm 2023 - 2024 sở GDĐT Đà Nẵng
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề chính thức kỳ thi tuyển sinh vào lớp 10 Trung học Phổ thông môn Toán năm học 2023 – 2024 sở Giáo dục và Đào tạo thành phố Đà Nẵng; kỳ thi được diễn ra vào sáng thứ Tư ngày 07 tháng 06 năm 2023. Trích dẫn Đề tuyển sinh lớp 10 môn Toán năm 2023 – 2024 sở GD&ĐT Đà Nẵng : + Đường thẳng y = -x + b (với b > 0) lần lượt cắt các tia Ox, Oy tại E, F. Chứng minh rằng tam giác OEF vuông cân và tìm b để tâm của đường tròn ngoại tiếp tam giác OEF là một điểm thuộc (P), với O là gốc tọa độ. + Hai đội công nhân cùng dọn vệ sinh khu vực khán đài Lễ hội Pháo hoa quốc tế Đà Nẵng trong 1 giờ 12 phút thì xong. Nếu đội A làm 40 phút và đội B làm 2 giờ thì xong việc. Hỏi nếu làm riêng thì mỗi đội hoàn thành công việc trong bao lâu? + Cho đường tròn (O) có hai đường kính AC, BD (A khác B, D). Trên đoạn thẳng BC lấy điểm E (E khác B, C), đường thẳng ED cắt đường tròn (O) tại điểm thứ hai là F. a) Chứng minh rằng AB = CD và CFD = BCA. b) Đường thẳng qua E, vuông góc với BC cắt tia AF tại G. Chứng minh rằng tứ giác CEFG nội tiếp và CD.EG = CB.CE. c) Gọi H là giao điểm của tia GE và AD. Đường thẳng qua H, song song với AC cắt đường thẳng qua E, song song với FC tại K. Chứng minh rằng ba điểm G, C, K thẳng hàng.
Đề tuyển sinh lớp 10 chuyên môn Toán (chung) năm 2023 - 2024 sở GDĐT Quảng Nam
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề chính thức kỳ thi tuyển sinh vào lớp 10 THPT chuyên và PTDTNT tỉnh môn Toán (chung) năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Quảng Nam; kỳ thi được diễn ra vào 06-08/06/2023. Trích dẫn Đề tuyển sinh lớp 10 chuyên môn Toán (chung) năm 2023 – 2024 sở GD&ĐT Quảng Nam : + Xác định hàm số y = ax + b biết đồ thị của nó đi qua điểm A(0;-3) và cắt đường thẳng (d): y = 2x − 1 tại điểm B có hoành độ bằng 4. + Cho phương trình x2 − 4x + 2m + 1 = 0 (m là tham số). Tìm giá trị của m để phương trình đã cho có hai nghiệm phân biệt x1, x2 thỏa mãn x12 + (x1 + x2)x2 = 4m2 + 3. + Cho nửa đường tròn tâm O có đường kính AB và điểm M tùy ý trên nửa đường tròn (M khác A và B). Trên đoạn thẳng MB lấy điểm H (H khác M và B). Đường thẳng đi qua H, vuông góc với AB tại K cắt nửa đường tròn đã cho tại E và cắt đường thẳng AM tại I. a) Chứng minh tứ giác AMHK nội tiếp đường tròn. b) Chứng minh KE2 = KA.KB = KI.KH. c) Gọi N là giao điểm thứ hai của đường thẳng AH và nửa đường tròn đã cho. Chứng minh ba điểm B, N, I thẳng hàng và tiếp tuyến của nửa đường tròn đã cho tại N đi qua trung điểm của đoạn thẳng IH.
Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2023 - 2024 sở GDĐT Kon Tum
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề chính thức kỳ thi tuyển sinh vào lớp 10 môn Toán (chuyên) năm học 2023 – 2024 sở Giáo dục và Đào tạo UBND tỉnh Kon Tum; kỳ thi được diễn ra vào ngày 04 tháng 06 năm 2023. Trích dẫn Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2023 – 2024 sở GD&ĐT Kon Tum : + Trên mặt phẳng tọa độ Oxy, cho đường thẳng d: y = (m2 + 2)x + 3 (m là tham số). Gọi A, B lần lượt là giao điểm của d với Ox, Oy. Tìm m để diện tích tam giác OAB bằng 2. + Cho phương trình: x2 – (m + 5)x + 3m + 4 = 0 (m là tham số). Tìm m để phương trình có hai nghiệm x1, x2 là độ dài hai cạnh góc vuông của một tam giác vuông có độ dài cạnh huyền bằng 5. + Cho tam giác ABC có góc C tù. Giả sử các đường phân giác trong và phân giác ngoài của góc A của tam giác ABC lần lượt cắt đường thẳng BC tại D, E sao cho AD = AE. Chứng minh rằng AB2 + AC2 = 4R2 với R là bán kính đường tròn ngoại tiếp tam giác ABC.
Đề tuyển sinh lớp 10 môn Toán năm 2023 - 2024 trường THPT chuyên Hà Tĩnh
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi chính thức kỳ thi tuyển sinh vào lớp 10 môn Toán năm học 2023 – 2024 trường THPT chuyên Hà Tĩnh, tỉnh Hà Tĩnh; kỳ thi được diễn ra vào sáng thứ Tư ngày 07 tháng 06 năm 2023. Trích dẫn Đề tuyển sinh lớp 10 môn Toán năm 2023 – 2024 trường THPT chuyên Hà Tĩnh : + Cho đường tròn (O) đường kính AB cố định, C là một điểm chạy trên đường tròn (O) không trùng với A và B. Các tiếp tuyến của đường tròn (O) tại A và C cắt nhau tại điểm M. Đường thẳng MB cắt AC tại F và cắt đường tròn (O) tại E (E khác B). a) Gọi H là trung điểm của đoạn thẳng AC. Chứng minh tam giác OEM đồng dạng với tam giác BHM. b) Gọi K là hình chiếu vuông góc của C trên đường thẳng AB. Hai đường thẳng MB và CK cắt nhau tại I. Tỉnh tỷ số FI/AB khi tổng diện tích hai tam giác IAC và IBC lớn nhất. c) Chứng minh rằng 1/BM + 1/BF = 2/BE. + Cho các số thực a, b, c thỏa mãn a > b > c; ab + bc + ca > 0 và a + b + c = 1. Tìm giá trị nhỏ nhất của biểu thức P = 1/(a – b) + 1/(b – c) + 1/(a – c) + 5/2(ab + bc + ca). + Cho x, y, z là các số chính phương. Chứng minh rằng (x + 1)(y + 1)(z + 1) luôn viết được dưới dạng tổng của hai số chính phương.