Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Hàm số lượng giác và phương trình lượng giác - Trần Quốc Nghĩa

Tài liệu gồm 107 trang do thầy Trần Quốc Nghĩa biên soạn, nội dung tài liệu gồm 4 phần: + Phần 1. Tóm tắt lý thuyết cần thiết cho nội dung cơ bản + Phần 2. Các ví dụ mẫu + Phần 3. Các bài tập tự luyện cơ bản và nâng cao + Phần 4. Các câu hỏi trắc nghiệm có đáp án Mục lục tài liệu: Phần 1 – HÀM SỐ LƯỢNG GIÁC + Dạng 1. Tìm tập xác định của hàm số + Dạng 2. Tìm giá trị lớn nhất. Giá trị nhỏ nhất của hàm số lượng giác + Dạng 3. Xét tính chẵn – lẻ của hàm số + Dạng 4. Tính tuần hoàn của hàm số + Dạng 5. Sử dụng đồ thị Phần 2 – PHƯƠNG TRÌNH LƯỢNG GIÁC + Dạng 1. Phương trình cơ bản + Dạng 2. Phương trình bậc nhất theo một hàm số lượng giác + Dạng 3. Tìm nghiệm phương trình lượng giác trên khoảng, đoạn cho trước + Dạng 4. Phương trình bậc hai, bậc 3 đối với một hàm số lượng giác + Dạng 5. Phương trình bậc nhất đối với sin x và cos x (Phương trình cổ điển) + Dạng 6. Phương trình thuần nhất bậc hai, bậc ba + Dạng 7. [NC] Phương trình đối xứng – Phản đối xứng + Dạng 8. [NC] Phương trình lượng giác không mẫu mực + Dạng 9. Phương trình lượng giác có tham số + Dạng 10. Một số phương pháp giải phương trình lượng giác [ads] Phần 3 – BÀI TẬP TỔNG HỢP CHUYÊN ĐỀ 1 Phần 4 – PTLG TRONG CÁC ĐỀ THI ĐH – CĐ – THPT QG + Dạng 1. Công thức lượng giác + Dạng 2. Đưa về phương trình tích + Dạng 3. Biến đổi tổng thành tích – tích thành tổng + Dạng 4. Phương trình bậc 2 – bậc 3 + Dạng 5. Phương trình bậc nhất theo sinx, cosx + Dạng 6. Phương trình đẳng cấp + Dạng 7. Phương trình đối xứng + Dạng 8. Phương pháp hạ bậc + Dạng 9. Công thức nhân ba + Dạng 10. Phương trình có chứa giá trị tuyện đối Phương trình có chứa căn thức + Dạng 11. Phương trình có chứa tham số Phần 5 – BÀI TẬP TRẮC NGHIỆM Hàm số lượng giác Phương trình cơ bản – Phương trình bậc nhất Phương trình cổ điển Phương trình bậc hai – bậc ba Phương trình đẳng cấp Phương trình dạng khác Phương trình chứa tham số Phần 6 – BẢNG ĐÁP ÁN BÀI TẬP TRẮC NGHIỆM

Nguồn: toanmath.com

Đọc Sách

Hàm số lượng giác và phương trình lượng giác - Lê Minh Tâm
Tài liệu gồm 124 trang, được biên soạn bởi thầy giáo Lê Minh Tâm, phân loại và hướng dẫn giải các dạng bài tập chuyên đề hàm số lượng giác và phương trình lượng giác, giúp học sinh lớp 11 tham khảo khi học chương trình Đại số và Giải tích 11 chương 1: Hàm số lượng giác và phương trình lượng giác. BÀI 1 . HÀM SỐ LƯỢNG GIÁC. I. Ôn tập. 1.1. Các hệ thức cơ bản. 1.2. Cung liên kết. 1.3. Công thức cộng. 1.4. Công thức nhân và hạ bậc. 1.5. Công thức biến đổi tổng thành tích. 1.6. Công thức biến đổi tích thành tổng. 1.7. Bảng giá trị lượng giác của một số góc đặc biệt. II. Hàm số y = sinx và hàm số y = cosx. III. Hàm số y = tanx và hàm số y = cotx. IV. Bài tập. Dạng 01. Tập xác định của hàm số lượng giác. Dạng 02. Tính chẵn lẻ của hàm số lượng giác. Dạng 03. Chu kỳ hàm số lượng giác. Dạng 04. Giá trị lớn nhất và giá trị nhỏ nhất của hàm số lượng giác. BÀI 2 . PHƯƠNG TRÌNH LƯỢNG GIÁC CƠ BẢN. I. Phương trình sinx = a và phương trình cosx = a. II. Phương trình tanx = a và phương trình cotx = a. III. Bài tập. BÀI 3 . PHƯƠNG TRÌNH BẬC HAI THEO HÀM LƯỢNG GIÁC. I. Dạng cơ bản. II. Bài tập. BÀI 4 . PHƯƠNG TRÌNH BẬC NHẤT VỚI HÀM SIN – COS. I. Dạng cơ bản. II. Bài tập. BÀI 5 . PHƯƠNG TRÌNH ĐẲNG CẤP. I. Dạng cơ bản. II. Bài tập. BÀI 6 . PHƯƠNG TRÌNH ĐỐI XỨNG. I. Dạng cơ bản. II. Bài tập. BÀI 7 . CÁC LOẠI PHƯƠNG TRÌNH KHÁC. I. Biến đổi tích thành tổng. 1.1. Ví dụ minh họa. 1.2. Bài tập rèn luyện. II. Biến đổi tổng thành tích. 2.1. Ví dụ minh họa. 2.2. Bài tập rèn luyện. III. Tổng hợp các phương pháp. 3.1. Ví dụ minh họa. 3.2. Bài tập rèn luyện. IV. Phương trình lượng giác có điều kiện. 4.1. Ví dụ minh họa. 4.2. Bài tập rèn luyện. BÀI 8 . TỔNG ÔN ĐẠI SỐ VÀ GIẢI TÍCH 11 CHƯƠNG I. Dạng 01. Tập xác định của hàm số lượng giác. Dạng 02. Giá trị lớn nhất – giá trị nhỏ nhất của hàm số lượng giác. Dạng 03. Phương trình lượng giác. Dạng 04. Tổng hợp phương trình lượng giác.
Trọng tâm kiến thức và phương pháp giải bài tập môn Toán 11 (Quyển 1)
Tài liệu gồm 188 trang, tổng hợp trọng tâm kiến thức và phương pháp giải bài tập môn Toán 11 (Quyển 1): hàm số lượng giác và phương trình lượng giác; giúp học sinh lớp 11 tham khảo khi học chương trình Đại số và Giải tích 11 chương 1. Mục lục tài liệu trọng tâm kiến thức và phương pháp giải bài tập môn Toán 11 (Quyển 1): PHẦN I . TỰ LUẬN (Trang 1). BÀI 1 . HÀM SỐ LƯỢNG GIÁC (Trang 1). VẤN ĐỀ 01. Tìm tập xác định của hàm số (Trang 4). VẤN ĐỀ 02. Xét tính chẵn, lẻ của hàm số (Trang 6). VẤN ĐỀ 03. Xét tính tuần hoàn và tìm chu kỳ của hàm số (Trang 7). VẤN ĐỀ 04. Tìm giá trị lớn nhất giá trị nhỏ nhất của hàm số (Trang 9). VẤN ĐỀ 05: Vẽ đồ thị của một hàm số suy ra từ một đồ thị của hàm số đã biết (Trang 16). BÀI 2 . PHƯƠNG TRÌNH LƯỢNG GIÁC (Trang 21). VẤN ĐỀ 01. Phương trình lượng giác cơ bản (Trang 21). VẤN ĐỀ 02. Một số phương pháp giải phương trình lượng giác (Trang 35). VẤN ĐỀ 03. Bài tập tổng hợp (Trang 45). BÀI 3 . BÀI TẬP TRONG ĐỀ ĐH – CĐ CÁC NĂM TRƯỚC (Trang 68). Dạng 1. Công thức lượng giác (Trang 68). Dạng 2. Đưa về phương trình tích (Trang 69). Dạng 3. Biến đổi tổng thành tích – tích thành tổng (Trang 73). Dạng 4. Phương trình bậc 2 – bậc 3 (Trang 75). Dạng 5. Phương trình bậc nhất theo sinx, cosx (Trang 80). Dạng 6. Phương trình đẳng cấp (Trang 83). Dạng 7. Phương trình đối xứng (Trang 84). Dạng 8. Phương pháp hạ bậc (Trang 84). Dạng 9. Công thức nhân ba (Trang 89). Dạng 10. Phương trình có chứa giá trị tuyện đối. Phương trình có chứa căn thức (Trang 87). Dạng 11. Phương trình có chứa tham số (Trang 89). PHẦN II . TRẮC NGHIỆM (Trang 90). A – ĐỀ BÀI (Trang 90). B – BẢNG ÐÁP ÁN (Trang 124). C – HƯỚNG DẪN GIẢI (Trang 125). Trong mỗi dạng bài, tài liệu tóm tắt lý thuyết SGK, hướng dẫn phương pháp giải toán, kèm theo các ví dụ minh họa từ cơ bản đến nâng cao, có đáp án và lời giải chi tiết.
Phân loại và phương pháp giải bài tập hàm số lượng giác và phương trình lượng giác
Tài liệu gồm 107 trang, được biên soạn bởi thầy giáo Trần Đình Cư, tóm tắt lý thuyết, phân loại và phương pháp giải bài tập hàm số lượng giác và phương trình lượng giác, giúp học sinh lớp 11 tham khảo khi học chương trình Đại số và Giải tích 11 chương 1 (Toán 11). BÀI 1 . HÀM SỐ LƯỢNG GIÁC. Dạng 1. Tìm tập xác đinh của hàm số. Dạng 2. Xét tính chẵn lẻ của hàm số. Dạng 3. Tìm giá trị lớn nhất và và giá trị nhỏ nhất của hàm số lượng giác. Dạng 4. Chứng minh hàm số tuần hoàn và xác định chu kỳ của nó. BÀI 2 . PHƯƠNG TRÌNH LƯỢNG GIÁC CƠ BẢN. BÀI 3 . MỘT SỐ PHƯƠNG TRÌNH LƯỢNG GIÁC THƯỜNG GẶP. Dạng 1. Phương trình bậc nhất đối với một hàm số lượng giác. Dạng 2. Phương trình bậc nhất đối với sin x và cos x. Dạng 3. Phương trình bậc hai đối với một hàm số lượng giác. Dạng 4. Phương trình bậc hai đối với sin x và cos x. Dạng 5. Phương trình chứa sin x ± cos x và sin x . cos x.
Phân loại và phương pháp giải bài tập cung và góc lượng giác, công thức lượng giác
Tài liệu gồm 110 trang, được biên soạn bởi thầy giáo Trần Đình Cư, tóm tắt lý thuyết, phân loại và phương pháp giải bài tập cung và góc lượng giác, công thức lượng giác, giúp học sinh lớp 10 tham khảo khi học chương trình Đại số 10 chương 6 (Toán 10). BÀI 1 . CUNG VÀ GÓC LƯỢNG GIÁC. Dạng toán: Xác định các yếu tố liên quan đến cung và góc lượng giác. BÀI 2 . GIÁ TRỊ LƯỢNG GIÁC MỘT CUNG. Dạng toán 1: Biểu diễn góc và cung lượng giác. Dạng toán 2: Xác định giá trị của biểu thức chứa góc đặc biệt, góc liên quan đặc biệt và dấu của giá trị lượng giác của góc lượng giác. Dạng toán 3: Chứng minh đẳng thức lượng giác, chứng minh biểu thức không phụ thuộc góc x, đơn giản biểu thức. Dạng toán 4: Tính giá trị của một biểu thức lượng giác khi biết một giá trị lượng giác. BÀI 3 . CÔNG THỨC LƯỢNG GIÁC. Dạng toán 1: Tính giá trị lượng giác, biểu thức lượng giác. Dạng toán 2: Xác định giá trị của một biểu thức lượng giác có điều kiện. Dạng toán 3: Chứng minh đẳng thức, đơn giản biểu thức lượng giác và chứng minh biểu thức lượng giác không phụ thuộc vào biến. Dạng toán 4: Bất đẳng thức lượng giác và tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức lượng giác. Dạng toán 5: Chứng minh đẳng thức, bất đẳng thức trong tam giác.