Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học sinh giỏi Toán 12 THPT năm 2018 - 2019 sở GDĐT Cần Thơ

Ngày 27 tháng 02 năm 2019, sở Giáo dục và Đào tạo Cần Thơ tổ chức kỳ thi chọn học sinh giỏi khối THPT cấp thành phố lớp 12 môn Toán năm học 2018 – 2019. Đề thi học sinh giỏi Toán 12 THPT năm 2018 – 2019 sở GD&ĐT Cần Thơ gồm 02 trang với 08 bài toán tự luận, học sinh làm bài thi trong 180 phút, đề thi có lời giải chi tiết (lời giải được trình bày bởi quý thầy, cô giáo nhóm Toán VD – VDC). Trích dẫn đề thi học sinh giỏi Toán 12 THPT năm 2018 – 2019 sở GD&ĐT Cần Thơ : + Một lớp học trong một trường đại học có 60 sinh viên, trong đó có 40 sinh viên học tiếng Anh, 30 sinh viên học tiếng Pháp và 20 sinh viên học cả tiếng Anh và tiếng Pháp. Chọn ngẫu nhiên 2 sinh viên của lớp học này. Tính xác suất để 2 sinh viên được chọn không học ngoại ngữ. Biết rằng trường này chỉ dạy hai ngoại ngữ là tiếng Anh và tiếng Pháp. [ads] + Năm bạn học sinh Tính, Nghĩa, Tuấn, Phú và Thuận ở chung một phòng trong ký túc xá của một trường trung học phô thông. Một hôm, người quản lý ký túc xá đến phòng của năm học sinh này để xác định lại hộ khẩu nhà của từng học sinh. Vì đều là học sinh giỏi toán nên các học sinh không trả lời trực tiếp mà nói với người quản lý ký túc xá như sau: – Tính: “Nhà bạn Phú ở Thới Lai còn nhà em ở Cờ Đỏ”. – Nghĩa: “Nhà em cũng ở Cờ Đỏ còn nhà bạn Tuấn ở Ô Môn”. – Tuấn: “Nhà em cũng ở Cờ Đỏ còn nhà bạn Phú ở Thốt Nốt”. – Phú: “Nhà em ở Thới Lai còn nhà bạn Thuận ở Ninh Kiều”. – Thuận: “Nhà em ở Ninh Kiều còn nhà bạn Tính ở Thốt Nốt. Em hãy giúp người quản lý ký túc xá xác định đúng hộ khẩu nhà của các học sinh trên. Biết răng trong câu trả lời của mỗi học sinh đều có một phần đúng và một phần sai đồng thời mỗi địa phương là địa chỉ hộ khâu của đúng một học sinh. + Một nhà sản xuất sữa bột dành cho trẻ em cần thiết kế bao bì cho loại sản phẩm mới. Theo yêu cầu của lãnh đạo nhà máy, hộp sữa mới có dạng hình hộp chữ nhật với đáy là hình vuông hoặc có dạng một hình trụ. Biết rằng hộp sữa mới có thể tích bằng 1dm3. Hãy giuýp lãnh đạo nhà máy thiết kế hộp sữa này sao cho vật liệu sử dụng làm bao bì là ít nhất.

Nguồn: toanmath.com

Đọc Sách

Đề thi chọn HSG Toán cấp tỉnh THPT năm 2018 sở GD và ĐT Quảng Ninh (Bảng A)
Nội dung Đề thi chọn HSG Toán cấp tỉnh THPT năm 2018 sở GD và ĐT Quảng Ninh (Bảng A) Bản PDF Sáng ngày 04 tháng 12 năm 2018, sở Giáo dục và Đào tạo tỉnh Quảng Ninh đã tổ chức kỳ thi học sinh giỏi môn Toán cấp tỉnh dành cho khối THPT năm học 2018 – 2019. Đề thi chọn HSG Toán cấp tỉnh THPT năm 2018 sở GD và ĐT Quảng Ninh (Bảng A) gồm 1 trang với 6 bài toán tự luận, thí sinh có 180 phút để làm bài thi (không tính thời gian phát đề). Trích dẫn đề thi chọn HSG Toán cấp tỉnh THPT năm 2018 sở GD và ĐT Quảng Ninh (Bảng A) : + Trong cuộc thi văn nghệ do Đoàn thanh niên trường THPT X, tỉnh Quảng Ninh tổ chức vào tháng 11 năm 2018 với thể lệ mỗi lớp tham gia một tiết mục. Kết quả có 12 tiết mục đạt giải trong đó: có 4 tiết mục khối 12, có 5 tiết mục khối 11 và 3 tiết mục khối 10. Ban tổ chức chọn ngẫu nhiên 5 tiết mục biểu diễn chào mừng ngày 20 tháng 11 (không tính thứ tự biểu diễn). Tính xác suất sao cho khối nào cũng có tiết mục được biểu diễn và trong đó có ít nhất hai tiết mục của khối 12. [ads] + Nhà bạn An muốn đặt thợ làm một bể cá, nguyên liệu bằng kính trong suốt, không có nắp đậy dạng hình hộp chữ nhật có thể tích chứa được 400000 (cm) nước. Biết rằng chiều cao của bể gấp 2 lần chiều rộng của bể. Xác định diện tích đáy của bể cá để tiết kiệm nguyên vật liệu nhất. + Trong mặt phẳng với hệ trục tọa độ Oxy, cho tam giác ABC có 3 góc đều nhọn. Gọi H là trực tâm của tam giác ABC; M, N, P lần lượt là giao điểm của AH, BH, CH với đường tròn ngoại tiếp tam giác ABC. Tìm tọa độ trực tâm H của tam giác ABC.
Đề thi chọn học sinh giỏi tỉnh lớp 12 môn Toán năm 2018 2019 sở GD và ĐT Hà Tĩnh
Nội dung Đề thi chọn học sinh giỏi tỉnh lớp 12 môn Toán năm 2018 2019 sở GD và ĐT Hà Tĩnh Bản PDF Đề thi chọn học sinh giỏi tỉnh Toán lớp 12 THPT năm 2018 – 2019 sở GD và ĐT Hà Tĩnh được biên soạn theo hình thức tự luận với 4 bài toán, thí sinh làm bài trong 180 phút, kỳ thi được diễn ra vào ngày 03 tháng 12 năm 2018, đề nhằm tuyển chọn các em học sinh giỏi môn Toán ở các trường THPT tại Hà Tĩnh để tiếp tục bồi dưỡng, tạo điều kiện để các em tham dự kỳ thi HSG Toán cấp quốc gia. Trích dẫn đề thi chọn học sinh giỏi tỉnh Toán lớp 12 năm 2018 – 2019 sở GD và ĐT Hà Tĩnh : + Có 10 đội tuyển bóng đá quốc gia ở khu vực Đông Nam Á tham gia thi đấu giải AFF Suzuki Cup 2018 trong đó có đội tuyển Việt Nam và đội tuyển Thái Lan, các đội được chia làm hai bảng, ký hiệu là bảng A và bảng B, mỗi bảng có 5 đội. Việc chia bảng được thực hiện bằng cách bốc thăm ngẫu nhiên. Tính xác suất để hai đội tuyển Việt Nam và Thái Lan nằm ở hai bảng đấu khác nhau. [ads] + Trên sa mạc có một khu đất hình chữ nhật ABCD có chiều dài AB = 70km, chiều rộng AID = 10km. Vận tốc trung bình của xe máy trên khu đất này là 20km/h, riêng đi trên cạnh CD thì vận tốc là 40km/h. Một người đi xe máy xuất phát từ A lúc 8 giờ sáng và muốn đến B sau 3 giờ nữa. Hỏi người đó có thể đến B kịp thời gian không? Xây dựng phương án di chuyển trên khu đất từ A đến B để hết ít thời gian nhất. + Một cái phễu có dạng hình nón chiều cao của phễu là h. Người ta đổ một lượng nước vào phễu sao cho chiều cao của lượng nước trong phễu là h1 = 3√7/2.h (hình H1). Ta bịt kín miệng phễu rồi lật ngược phễu lên (hình H2), gọi chiều cao của cột nước trong phễu ở hình H2 là k. Tính k/h.
Đề thi chọn HSG lớp 12 môn Toán THPT năm học 2018 2019 sở GD và ĐT Vĩnh Phúc
Nội dung Đề thi chọn HSG lớp 12 môn Toán THPT năm học 2018 2019 sở GD và ĐT Vĩnh Phúc Bản PDF Đề thi chọn HSG Toán lớp 12 THPT năm học 2018 – 2019 sở GD và ĐT Vĩnh Phúc gồm 01 trang với 10 bài toán tự luận, thời gian làm bài 180 phút, kỳ thi được diễn ra vào ngày 27 tháng 11 năm 2018, đề thi có lời giải chi tiết. Trích dẫn đề thi chọn HSG Toán lớp 12 THPT năm học 2018 – 2019 sở GD và ĐT Vĩnh Phúc : + Cho tứ diện ABCD và các điểm M, N, P lần lượt thuộc các cạnh BD, BC, AC sao cho BD = 2BM, BC = 4BN, AC = 3AP. Mặt phẳng (MNP) cắt AD tại Q. Tính tỷ số thể tích hai phần của khối tứ diện ABCD được chia bởi(MNP). + Xếp mười học sinh gồm bốn học sinh lớp 12, ba học sinh lớp 11 và ba học sinh lớp 10 ngồi vào một hàng ngang gồm 10 ghế được đánh số từ 1 đến 10. Tính xác suất để không có hai học sinh lớp 12 ngồi cạnh nhau. + Cho hai đường thẳng Ax, By chéo nhau, vuông góc và nhận đoạn AB làm đoạn vuông góc chung. Hai điểm M, N lần lượt di động trên Ax, By sao cho AM + BN = MN. Gọi O là trung điển của đoạn AB. Chứng minh tam giác OMN là tam giác tù và khoảng cách từ O đến đường thẳng MN không đổi khi M, N khi di động trên Ax, By.
Đề thi chọn HSG thành phố môn Toán năm 2018 2019 sở GD và ĐT Hải Phòng
Nội dung Đề thi chọn HSG thành phố môn Toán năm 2018 2019 sở GD và ĐT Hải Phòng Bản PDF Đề thi chọn HSG thành phố môn Toán năm 2018 – 2019 sở GD và ĐT Hải Phòng bảng B (bảng không chuyên) được biên soạn theo hình thức tự luận với 7 bài toán, thời gian làm bài 180 phút, kỳ thi được diễn ra vào ngày 02 tháng 11 năm 2018, đề thi có lời giải chi tiết. Trích dẫn đề thi chọn HSG thành phố môn Toán năm 2018 – 2019 sở GD và ĐT Hải Phòng : + Một quân vua được đặt trên một ô giữa bàn cờ vua. Mỗi bước di chuyển, quân vua được chuyển sang một ô khác chung cạnh hoặc chung đỉnh với ô đang đứng (xem hình minh họa). Bạn An di chuyển quân vua ngẫu nhiên 3 bước. Tính xác suất để sau 3 bước đi quân vua trở về ô xuất phát. + Trong mặt phẳng với hệ tọa độ Oxy, cho hình vuông ABCD tâm E, gọi G là trọng tâm tam giác ABE. Điểm K (7;-2) thuộc đoạn ED sao cho GA = GK. Tìm tọa độ đỉnh A và viết phương trình cạnh AB, biết đường thẳng AG có phương trình 3x – y – 13 = 0 và đỉnh A có hoành độ nhỏ hơn 4. + Cho hàm số y = x^3 + 3x^2 – 9x + 1 có đồ thị là (C). Gọi A, B là hai điểm cực trị của (C). Tính diện tích của tam giác OAB, trong đó O là gốc tọa độ.