Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học kỳ 1 Toán 11 năm học 2017 - 2018 trường THPT Vọng Thê - An Giang

Đề thi học kỳ 1 Toán 11 năm học 2017 – 2018 trường THPT Vọng Thê – An Giang gồm 40 câu hỏi trắc nghiệm và 2 bài toán tự luận, thời gian làm bài 90 phút, đề thi có đáp án và lời giải chi tiết . Trích dẫn đề thi học kỳ 1 Toán 11 : + Trong đợt xét trao học bổng của bác sĩ Phạm Bửu Hoàng (Giám đốc BV đa khoa huyện Thoại Sơn) cho học sinh trường THPT Vọng Thê. Đoàn trường đã chọn ngẫu nhiên 5 học sinh trong số 27 học sinh đến từ các lớp để trao học bổng. Hỏi có bao nhiêu cách chọn 5 em để nhận học bổng, biết mỗi suất học bổng có giá trị như nhau? + Từ Long xuyên đến Cần Thơ có 2 cách để đi. Từ Cần Thơ đến Thành phố Hồ Chí Minh có 3 cách để đi. Hỏi có bao nhiêu cách để đi từ Long xuyên đến Thành phố Hồ Chí Minh mà phải qua Cần Thơ? [ads] + Cho mặt phẳng (α) chứa hình bình hành ABCD, một điểm S nằm ngoài (α). Gọi d là giao tuyến của hai mặt phẳng (SAB) và (SCD). Mệnh đề nào sau đây đúng? A. d là đường thẳng SO với O = AC ∩ BD B. d là đường thẳng qua điểm S và song song với AB C. d là đường thẳng qua điểm S và song song với AC D. d là đường thẳng SK với K là trung điểm của AB

Nguồn: toanmath.com

Đọc Sách

Đề thi học kì 1 (HK1) lớp 11 môn Toán năm 2020 2021 trường Nguyễn Tất Thành Hà Nội
Nội dung Đề thi học kì 1 (HK1) lớp 11 môn Toán năm 2020 2021 trường Nguyễn Tất Thành Hà Nội Bản PDF Ngày … tháng 12 năm 2020, trường THCS & THPT Nguyễn Tất Thành, trực thuộc trường Đại học Sư Phạm Hà Nội tổ chức kỳ thi kiểm tra đánh giá chất lượng môn Toán lớp 11 giai đoạn cuối học kì 1 năm học 2020 – 2021. Đề thi học kỳ 1 Toán lớp 11 năm 2020 – 2021 trường Nguyễn Tất Thành – Hà Nội được biên soạn theo dạng đề trắc nghiệm khách quan kết hợp với tự luận, đề gồm 02 trang, phần trắc nghiệm gồm 12 câu (03 điểm), phần tự luận gồm 05 câu (07 điểm), thời gian làm bài 90 phút. Trích dẫn đề thi học kỳ 1 Toán lớp 11 năm 2020 – 2021 trường Nguyễn Tất Thành – Hà Nội : + Cho tứ diện ABCD có M là trung điểm của AC. Gọi (P) là mặt phẳng đi qua M và song song với hai đường thẳng AB và CD. Mặt phẳng (P) cắt tứ diện ABCD theo thiết diện là một hình gì? A. Tam giác. B. Hình thang cân. C. Hình bình hành. D. Hình thoi. + Đội thanh niên tình nguyện của nhà trường có 20 học sinh, trong đó có 5 học  sinh khối 12; 8 học sinh khối 11 và 7 học sinh khối 10. Chọn ngẫu nhiên 4 học sinh trong đội thanh niên tình nguyện của nhà trường đi làm nhiệm vụ. Tính xác suất để 4 học sinh được chọn có đủ cả ba khối 10, 11 và 12. + Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O. Gọi M và N là hai điểm lần lượt thuộc các cạnh SB và SD sao cho 2SM = 3MB và 2SN = 3ND. Gọi E là trung điểm của OC. 1. Chứng minh BD song song với mặt phẳng (EMN). 2. Xác định thiết diện của hình chóp S.ABCD cắt bởi mặt phẳng (EMN). 3. Gọi K là giao điểm của SA và mặt phẳng (EMN). Tính tỷ số SK/KA.
Đề thi học kì 1 (HK1) lớp 11 môn Toán chuyên năm 2020 2021 trường chuyên Lê Hồng Phong Nam Định
Nội dung Đề thi học kì 1 (HK1) lớp 11 môn Toán chuyên năm 2020 2021 trường chuyên Lê Hồng Phong Nam Định Bản PDF Đề thi HK1 Toán lớp 11 chuyên năm 2020 – 2021 trường chuyên Lê Hồng Phong – Nam Định gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 150 phút (không kể thời gian phát đề). Trích dẫn đề thi HK1 Toán lớp 11 chuyên năm 2020 – 2021 trường chuyên Lê Hồng Phong – Nam Định : + Cho tam giác ABC nhọn, nội tiếp đường tròn (O), có đường cao AD (D thuộc BC). Kẻ DE, DF lần lượt vuông góc với AB, AC (E thuộc AB, F thuộc AC). Gọi I là giao điểm của BF và CE. a) Gọi K là giao điểm của BF và DE, L là giao điểm của CE và DF. Chứng minh rằng KL song song với BC. b) Gọi M, N lần lượt là trung điểm của AD và AI. Chứng minh rằng M, N, O thẳng hàng. + Cho số nguyên dương n. Có bao nhiêu số tự nhiên chia hết cho 3, có n chữ số và các chữ số đều thuộc {1;2;3;6}. + Tìm tất cả các hàm số f: R → R thỏa mãn: f(x)f(y) – f(x + y) = 4/9.xy với mọi x, y thuộc R.
Đề thi học kì 1 (HK1) lớp 11 môn Toán năm 2020 2021 trường THPT chuyên Hà Nội Amsterdam
Nội dung Đề thi học kì 1 (HK1) lớp 11 môn Toán năm 2020 2021 trường THPT chuyên Hà Nội Amsterdam Bản PDF Đề thi học kì 1 Toán lớp 11 năm 2020 – 2021 trường THPT chuyên Hà Nội – Amsterdam được biên soạn theo dạng đề trắc nghiệm khách quan kết hợp với tự luận, phần trắc nghiệm gồm 20 câu, chiếm 60% số điểm, phần tự luận gồm 03 câu, chiếm 40% số điểm, thời gian làm bài 90 phút. Trích dẫn đề thi học kì 1 Toán lớp 11 năm 2020 – 2021 trường THPT chuyên Hà Nội – Amsterdam : + Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O. Gọi điểm I và điểm M lần lượt là trung điểm của các đoạn thẳng SA và OC. 1 Xác định giao tuyến của hai mặt phẳng (SAC) và (SBD). 2 Gọi (α) là mặt phẳng chứa đường thẳng IM và song song với đường thẳng BD. Xác định thiết diện của mặt phẳng (α) với hình chóp S.ABCD. 3 Giả sử mặt phẳng (α) cắt đường thẳng SO tại điểm K. Tính tỉ số SK/KO. + Từ 30 câu hỏi trắc nghiệm gồm 15 câu dễ, 9 câu trung bình và 6 câu khó người ta chọn ra 10 câu để làm đề kiểm tra sao cho phải có đủ cả 3 loại dễ, trung bình và khó. Hỏi có thể lập được bao nhiêu đề kiểm tra. + Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M, N, Q lần lượt là trung điểm của các cạnh AB, AD, SC. Thiết diện của hình chóp với mặt phẳng (MNQ) là đa giác có bao nhiêu cạnh?
Đề thi học kì 1 (HK1) lớp 11 môn Toán năm 2020 2021 trường THPT Nguyễn Thị Minh Khai TP HCM
Nội dung Đề thi học kì 1 (HK1) lớp 11 môn Toán năm 2020 2021 trường THPT Nguyễn Thị Minh Khai TP HCM Bản PDF Đề thi HK1 Toán lớp 11 năm 2020 – 2021 trường THPT Nguyễn Thị Minh Khai, thành phố Hồ Chí Minh gồm 01 trang với 06 bài toán dạng tự luận, thời gian làm bài 90 phút, đề thi có đáp số và lời giải chi tiết. Trích dẫn đề thi HK1 Toán lớp 11 năm 2020 – 2021 trường THPT Nguyễn Thị Minh Khai – TP HCM : + Cho tập hợp A = {1; 2; 3; 4; 5; 6}. Gọi B là tập hợp tất cả các số tự nhiên gồm 4 chữ số đôi một khác nhau được lấy từ A. a) Tính số phần tử của B. b) Chọn ngẫu nhiên 2 số thuộc B. Tính xác suất để trong hai số được chọn có đúng 1 số có mặt chữ số 3. + Dùng phương pháp qui nạp toán học, chứng minh rằng với mọi số nguyên dương n ta luôn có 13^n – 1 chia hết cho 12. + Tìm hệ số của x^20 trong khai triển Newton của (2x^5 – 4)^n biết n là số tự nhiên thỏa 2.2An + 50 = 2A2n.