Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi lớp 9 môn Toán năm 2022 2023 phòng GD ĐT TP Cao Lãnh Đồng Tháp

Nội dung Đề học sinh giỏi lớp 9 môn Toán năm 2022 2023 phòng GD ĐT TP Cao Lãnh Đồng Tháp Bản PDF - Nội dung bài viết Đề học sinh giỏi Toán lớp 9 năm 2022 - 2023 phòng GD&ĐT TP Cao Lãnh - Đồng Tháp Đề học sinh giỏi Toán lớp 9 năm 2022 - 2023 phòng GD&ĐT TP Cao Lãnh - Đồng Tháp Sytu xin gửi đến quý thầy cô và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán lớp 9 năm học 2022 - 2023 của phòng Giáo dục và Đào tạo thành phố Cao Lãnh, tỉnh Đồng Tháp. Kỳ thi sẽ diễn ra vào ngày 18 tháng 12 năm 2022. Trích dẫn phần nội dung của đề thi: Nhân dịp ngày siêu khuyến mãi 12.12.2022, một siêu thị tại Cao Lãnh đã giảm giá lô hàng tivi từ giá niêm yết 7.400.000 đồng/cái. Sau khi giảm 10% so với giá niêm yết, siêu thị bán được 10 cái tivi. Tiếp theo, sau khi giảm thêm 5% (so với giá giảm lần 1) siêu thị bán được 15 cái nữa. Cuối cùng, sau khi bán hết 25 cái tivi, siêu thị lời được 11.505.000 đồng. Hỏi giá vốn của một cái tivi là bao nhiêu tiền? Cho a và b là hai số thực phân biệt thỏa mãn \(a^4 + b^4 = 4\). Chứng minh rằng \(ab \leq 2\). Cho hình vuông ABCD có tâm O và cạnh bằng 6 cm, điểm M nằm trên cạnh BC. a) Khi BM = 2 cm, hạ OK vuông góc với AM tại K. Tính độ dài đoạn OK. b) Khi M thay đổi trên BC, N thay đổi trên CD sao cho \(\angle MAN = 45^{\circ}\) là giao điểm của AN và BD. Chứng minh tam giác AEM vuông cân và đường thẳng MN luôn tiếp xúc với một đường tròn cố định. Đây là một đề thi thú vị và đầy thử thách. Chúc các em học sinh lớp 9 thành công trong kỳ thi sắp tới!

Nguồn: sytu.vn

Đọc Sách

Tuyển tập 45 đề thi HSG Toán 9 có lời giải chi tiết
Tài liệu tuyển tập 45 đề thi HSG Toán 9 có lời giải chi tiết từ các trường THPT và cơ sở Giáo dục – Đào tạo trên toàn quốc. Các đề thi theo hình thức tự luận, hy vọng bộ đề học sinh giỏi các năm học trước sẽ giúp các em học sinh nắm được cấu trúc đề, nội dung cần ôn tập chuẩn bị cho kỳ thi HSG Toán 9 sắp tới.
Tuyển tập 100 đề thi học sinh giỏi môn Toán 9 - Hồ Khắc Vũ
Tài liệu gồm 114 trang tuyển tập 100 đề thi chọn học sinh giỏi môn Toán lớp 9 từ các trường THCS, cơ sở GD và ĐT trên toàn quốc. Tài liệu do thầy Hồ Khắc Vũ tổng hợp và biên soạn.
Đề thi chọn đội tuyển học sinh giỏi Toán 9 năm học 2017 - 2018 trường THCS Trần Mai Ninh - Thanh Hóa (Vòng 1)
Đề thi chọn đội tuyển học sinh giỏi (HSG) Toán 9 năm học 2017 – 2018 trường THCS Trần Mai Ninh – Thanh Hóa (Vòng thi thứ nhất) gồm 5 bài toán tự luận. Trích dẫn đề thi : + Cho hình vuông ABCD, có M và N theo thứ tự là trung điểm của các cạnh AB và BC, nối DN cắt CM tại I. a. Chứng minh: CI.CM = CN.CB b. Chứng minh: DI = 4IN c. Kẻ tia AH vuông góc với DN tại H và tia AH cắt CD tại P. Cho AB = a Tính diện tích tứ giác HICP [ads] + Cho a^2 + b^2 = c^2 + d^2 = 2017 và ac + bd = 0. Tính giá trị biểu thức S = ab + cd. + Cho a, b là các số nguyên dương sao cho: a + 1 và b + 2007 chia hết cho 6. Chứng minh: 4^a + a + b chia hết cho 6. + Cho x, y là các số thực dương thỏa mãn: x + y = (x – y)√xy. Tìm giá trị nhỏ nhất của P = x + y.
Đề thi học sinh giỏi năm học 2017 - 2018 môn Toán 9 phòng Giáo dục và Đào tạo Tiền Hải - Thái Bình
Đề thi học sinh giỏi (HSG) năm học 2017 – 2018 môn Toán 9 phòng Giáo dục và Đào tạo Tiền Hải – Thái Bình gồm 5 bài toán tự luận, thời gian làm bài 120 phút. Trích dẫn đề thi : + Tìm các số a, b sao cho đa thức f(x) = x^4 + ax^3 + bx – 1 chia hết cho đa thức x^2 – 3x + 2. + Chứng minh rằng : B = 4x(x + y)(x + y + z)(x + z) + y^2.z^2 là một số chính phương với x, y, z là các số nguyên. + Cho tam giác ABC vuông tại A (AB < AC). Kẻ AH vuông góc với BC tại H. Gọi D, E lần lượt là hình chiếu của H trên AB, AC. [ads] a) Biết AB = 6 cm, HC = 6,4 cm. Tính BC, AC b) Chứng minh: DE^3 = BC.BD.CE c) Đường thẳng kẻ qua B vuông góc với BC cắt HD tại M, đường thẳng kẻ qua C vuông góc với BC cắt HE tại N. Chứng minh M, A, N thẳng hàng d) Chứng minh rằng : BN, CM, DE đồng quy + Cho đa thức f(x) = x^4 + ax^3 + bx^2 + c^x + d (với a, b, c là các số thực). Biết f(1) = 10; f(2) = 20; f(3) = 30. Tính giá trị biểu thức A = f(8) – f(-4).