Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi HSG Toán 9 năm 2019 - 2020 phòng GDĐT Buôn Ma Thuột - Đắk Lắk

Thứ Năm ngày 09 tháng 01 năm 2020, phòng Giáo dục và Đào tạo thành phố Buôn Ma Thuột, tỉnh Đắk Lắk tổ chức kỳ thi chọn học sinh giỏi môn Toán 9 THCS cấp thành phố năm học 2019 – 2020. Đề thi HSG Toán 9 năm 2019 – 2020 phòng GD&ĐT Buôn Ma Thuột – Đắk Lắk gồm có 01 trang với 05 bài toán tự luận, học sinh có 150 phút để làm bài, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi HSG Toán 9 năm 2019 – 2020 phòng GD&ĐT Buôn Ma Thuột – Đắk Lắk : + Đa thức P(x) chia cho (x – 1) được số dư bằng 4, chia cho (x – 3) được số dư bằng 14. Tìm số dư của phép chia P(x) cho (x – 1)(x – 3). + Cho hàm số y = (m + 2)x + m – 1. a) Tìm điều kiện của m để hàm số nghịch biến trên tập số thực. b) Tìm điều kiện của m để đồ thị hàm số cắt trục hoành tại điểm có hoành độ bằng 3. [ads] c) Tìm m để đồ thị của các hàm số y = -x + 2; y = 2x – 1 và y = (m – 2)x + m – 1 đồng quy. d) Tìm m để đồ thị hàm số tạo với trục tung và trục hoành một tam giác có diện tích bằng 2. + Cho hình vuông ABCD có cạnh a. Điểm M di động trên đường chéo AC. Kẻ ME vuông góc với AB, MF vuông góc với BC (E thuộc AB, F thuộc BC). Xác định vị trí của điểm M để diện tích tam giác DEF đạt giá trị nhỏ nhất.

Nguồn: toanmath.com

Đọc Sách

Đề Olympic Toán 9 lần 1 năm 2023 - 2024 trường THPT chuyên Lê Quý Đôn - Điện Biên
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi Olympic môn Toán 9 lần thứ nhất năm học 2023 – 2024 trường THPT chuyên Lê Quý Đôn, tỉnh Điện Biên; kỳ thi được diễn ra vào ngày 21 tháng 04 năm 2024. Trích dẫn Đề Olympic Toán 9 lần 1 năm 2023 – 2024 trường THPT chuyên Lê Quý Đôn – Điện Biên : + Cho phương trình: x2 + mx + 2m – 7 = 0 (1) (ẩn x) với m là tham số nguyên. a) Chứng minh phương trình (1) luôn có hai nghiệm phân biệt x1, x2; tìm m để 9×1 = x22. b) Chứng minh rằng m là số nguyên lẻ thì phương trình (1) không có nghiệm hữu tỉ. + Cho tam giác nhọn ABC (AB < AC), ba đường cao AD, BE, CF cắt nhau tại H. Gọi I là giao điểm của EF và AH. Đường thẳng qua I và song song với BC cắt AB, BE lần lượt tại P và Q. a) Chứng minh AEF ~ ABC. b) Chứng minh IP = IQ. c) Gọi M là trung điểm của AH. Chứng minh I là trực tâm của tam giác BMC.
Đề học sinh giỏi Toán 9 cấp tỉnh năm 2023 - 2024 sở GDĐT Bà Rịa - Vũng Tàu
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán 9 cấp tỉnh năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Bà Rịa – Vũng Tàu; kỳ thi được diễn ra vào ngày 16 tháng 04 năm 2024.
Đề học sinh giỏi Toán 9 cấp tỉnh năm 2023 - 2024 sở GDĐT Bạc Liêu
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán 9 cấp tỉnh năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Bạc Liêu; kỳ thi được diễn ra vào ngày 07 tháng 04 năm 2024.
Đề học sinh giỏi cấp tỉnh Toán THCS năm 2023 - 2024 sở GDĐT Quảng Nam
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp tỉnh môn Toán THCS năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Quảng Nam; kỳ thi được diễn ra vào ngày 12 tháng 04 năm 2024. Trích dẫn Đề học sinh giỏi cấp tỉnh Toán THCS năm 2023 – 2024 sở GD&ĐT Quảng Nam : + Cho tam giác nhọn ABC (AB < AC) có ba đường cao AD, BE, CF đồng quy tại H. Đường tròn đường kính AC cắt đoạn thẳng BH tại M. Trên đoạn thẳng HC lấy điểm N sao cho AM = AN. a) Chứng minh EB.EH = ED.EF. b) Chứng minh N thuộc đường tròn ngoại tiếp tam giác ABD. + Cho tam giác nhọn ABC (AB < AC) có hai đường cao AE, BD cắt nhau tại H. Đường trung trực của đoạn thẳng DH cắt AE tại M, cắt đường tròn ngoại tiếp tam giác BCD tại P và Q (P nằm giữa M và Q). a) Chứng minh MD là tiếp tuyến của đường tròn ngoại tiếp tam giác BCD. b) Chứng minh APM + AQM = CBD. c) Đường thẳng AQ cắt đường tròn ngoại tiếp tam giác BCD tại F (F khác Q). Chứng minh APB = FPB. + Cho p là số nguyên tố. Tìm tất cả các số nguyên dương b sao cho nghiệm của phương trình bậc hai x2 – bx + bp = 0 là số nguyên.