Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

123 bài toán hàm số bậc nhất và đường thẳng - Lương Tuấn Đức

Trong khuôn khổ Toán học sơ cấp nói chung và Đại số phổ thông nói riêng, Hàm số và Đồ thị là dạng toán cơ bản nhưng thú vị, có phạm vi trải rộng, phong phú, liên hệ chặt chẽ với nhiều bộ phận khác của toán học sơ cấp cũng như toán học hiện đại. Tại Việt Nam, nội dung hàm số và đồ thị là một bộ phận hữu cơ, quan trọng, được phổ biến giảng dạy chính thức trong chương trình sách giáo khoa Toán bước đầu là lớp 7, tiếp sau là các lớp 9, 10, 11, 12 song song với các khối lượng kiến thức liên quan. Các kỹ năng đối với hàm số, đồ thị được luyện tập một cách đều đặn, bài bản và hệ thống sẽ rất hữu ích, không chỉ trong bộ môn Toán mà còn phục vụ đắc lực cho các môn khoa học tự nhiên khác như Hóa học, Vật lý, Địa lý, Sinh học …. Đối với chương trình Đại số lớp 9 THCS hiện hành, hàm số và đồ thị giữ vai trò chính yếu trong Đề thi kiểm tra chất lượng học kỳ, Đề thi tuyển sinh lớp 10 THPT hệ đại trà và hệ THPT Chuyên. Đối với các lớp cao hơn, nội dung này sẽ được mở rộng trở thành kiến thức chính yếu trong chương trình Đại số – Giải tích xuyên suốt các lớp 10, 12, bao gồm hàm số bậc cao và bài toán hình học giải tích, một bài toán mang tính phân loại cao trong kỳ thi tuyển sinh đại học – cao đẳng, kỳ thi THPT Quốc gia hàng năm, một kỳ thi đầy cam go, kịch tính và bất ngờ, nó lại là một câu rất được quan tâm của các bạn học sinh, phụ huynh, các thầy cô, giới chuyên môn và đông đảo bạn đọc yêu Toán. Trong phạm vi hàm số và đồ thị, tài liệu này tác giả tập trung trình bày một lớp các bài toán khảo sát sự biến thiên, vẽ đồ thị hàm số bậc nhất (tức là dạng đường thẳng), vấn đề vị trí tương đối giữa hai đường thẳng, hoặc vị trí tương đối giữa đường thẳng và đường cong, một số bài toán gắn kết yếu tố lượng giác, hình học giải tích. Như đã nói ở trên, mục đích khoa học chính của tài liệu nhằm phục vụ cho quá trình dạy và học, kiểm tra, kỳ thi tuyển sinh lớp 9 THPT, ngoài ra tác giả đã cố gắng nâng cao, mở rộng và phát triển từng bài toán theo đúng nội dung chủ đạo hàm số bậc THPT, chủ quan cho rằng điều này sẽ góp phần giới thiệu, định hướng, phá bỏ bỡ ngỡ, tạo ra cái nhìn đa chiều đối với bài toán đồ thị và hàm số, với những nội dung như cực trị, tương giao, tiếp tuyến, giá trị lớn nhất nhỏ nhất hàm số mai sau, thiết nghĩ yếu tố này góp phần làm tiền đề tư duy hàm số, tư duy hình học giải tích ở cấp THPT trong tương lai các em học sinh THCS, ngoài ra còn mang tính mở rộng, đào sâu, hướng đến mong muốn bạn đọc nghiên cứu đầy đủ về đường thẳng, tăng cường sự sáng tạo, đột phá, phát huy hơn nữa trong toán học và các ứng dụng trong hàng loạt các môn khoa học tự nhiên. [ads] I. KIẾN THỨC CHUẨN BỊ 1. Kỹ thuật nhân, chia đơn thức, đa thức, hằng đẳng thức. 2. Nắm vững các phương pháp phân tích đa thức thành nhân tử. 3. Nắm vững các phương pháp giải, biện luận phương trình bậc nhất, bậc hai, bậc cao, phương trình chứa ẩn ở mẫu. 4. Sử dụng thành thạo các ký hiệu toán học, logic (ký hiệu hội, tuyển, kéo theo, tương đương). 5. Kiến thức nền tảng về mặt phẳng tọa độ, hàm số bậc nhất, đường thẳng. 6. Kỹ năng vẽ đồ thị hàm số. 7. Kiến thức nền tảng về hệ số góc của đường thẳng, công thức độ dài, hệ thức lượng trong tam giác vuông, công thức lượng giác, đường tròn, hàm số bậc hai parabol, phương trình nghiệm nguyên. 8. Kiến thức nền tảng về giá trị tuyệt đối, căn thức, ước lượng – đánh giá, hàm số – đồ thị, bất đẳng thức – cực trị, giá trị lớn nhất, giá trị nhỏ nhất.

Nguồn: toanmath.com

Đọc Sách

Tài liệu ôn thi tuyển sinh vào lớp 10 môn Toán - Lư Sĩ Pháp
Tài liệu gồm 63 trang, được biên soạn bởi thầy giáo Lư Sĩ Pháp, tóm tắt lý thuyết và tuyển chọn các dạng bài tập giúp học sinh ôn thi tuyển sinh vào lớp 10 môn Toán. Vấn đề 1. Rút gọn và chứng minh biểu thức. Vấn đề 2. Phương trình. Vấn đề 3. Hệ phương trình. Vấn đề 4. Ứng dụng định lí Vi-ét. Vấn đề 5. Đường thẳng. Vấn đề 6. Parabol. Vấn đề 7. Giải toán bằng cách lập phương trình hoặc hệ phương trình. Vấn đề 8. Hình học. Vấn đề 9. Một số đề tham khảo tuyển sinh vào lớp 10 môn Toán.
Tài liệu luyện thi vào lớp 10 môn Toán phần Hình học - Vũ Xuân Hưng
Tài liệu gồm 122 trang, được biên soạn bởi thầy giáo Vũ Xuân Hưng, tổng hợp kiến thức cần nhớ, các dạng bài tập và hướng dẫn giải, tuyển chọn các bài tập từ cơ bản đến nâng cao các chủ đề Hình học bậc THCS, giúp học sinh ôn tập chuẩn bị cho kỳ thi tuyển sinh vào lớp 10 môn Toán. CHUYÊN ĐỀ 7 – HÌNH HỌC PHẲNG. A. KIẾN THỨC CẦN NHỚ 1. Hệ thức lượng trong tam giác vuông. 2. Các tỉ số lượng giác của góc nhọn trong tam giác vuông. 3. Góc và đường tròn. B. CÁC DẠNG BÀI TẬP CƠ BẢN Dạng toán 1. Chứng minh tứ giác nội tiếp đường tròn. Dạng toán 2. Chứng minh tứ giác đã cho là hình bình hành, hình thoi, hình chữ nhật, hình vuông. Dạng toán 3. Chứng minh đường thẳng là tiếp tuyến của đường tròn. Dạng toán 4. Chứng minh ba điểm thẳng hàng. Dạng toán 5. Chứng minh tỉ lệ độ dài đoạn thẳng. Dạng toán 6. Chứng minh đường thẳng là tiếp tuyến của đường tròn. TUYỂN TẬP ĐỀ THI TUYỂN SINH VÀO LỚP 10 MÔN TOÁN. Xem thêm : Tài liệu luyện thi vào lớp 10 môn Toán phần Đại số – Vũ Xuân Hưng
Các bài toán chứng minh ba điểm thẳng hàng - ba đường thẳng đồng quy
Tài liệu gồm 80 trang, được biên soạn bởi thầy giáo Nguyễn Công Lợi, hướng dẫn phương pháp và tuyển chọn các bài toán chứng minh ba điểm thẳng hàng – ba đường thẳng đồng quy, đây là dạng toán thường gặp trong các đề tuyển sinh vào lớp 10 môn Toán. A. CÁC BÀI TOÁN VỀ BA ĐIỂM THẲNG HÀNG I. Một số phương pháp chứng minh ba điểm thẳng hàng + Phương pháp 1: Sử dụng góc bù nhau: Nếu có 0 ABx xBC 180 thì 3 điểm A, B, C thẳng hàng theo thứ tự đó. + Phương pháp 2: Sử dụng tiên đề về đường thẳng song song: Tiên đề Ơclít: Qua một điểm ở ngoài một đường thẳng chỉ kẻ được duy nhất một đường thẳng song song với đường thẳng đã cho. Do đó, nếu qua điểm A ta kẻ được AB và AC cùng song song với một đường thẳng d nào đó thì A, B, C thẳng hàng. Để chứng minh ba điểm A, B, C thẳng hàng ta chứng minh AB và AC cùng song song với một đường thẳng d. + Phương pháp 3: Sử dụng tiên đề về đường thẳng vuông góc: Để chứng minh ba điểm A, B, C thẳng hàng ta đi chứng minh AB và AC cùng vuông góc với một đường thẳng d. + Phương pháp 4: Sử dụng 2 tia trùng nhau hoặc đối nhau: Nếu hai tia MA, MB trùng nhau hoặc đối nhau thì 3 điểm M, A, B thẳng hàng. + Phương pháp 5: Thêm điểm: Để chứng minh 3 điểm A, B, C thẳng hàng có thể xác định thêm điểm D khác A, B, C sau đó chứng minh hai trong ba bộ ba điểm A, B, D; A, C, D; B, C, D thẳng hàng. + Phương pháp 6: Phương pháp sử dụng hình duy nhất: Để chứng minh ba điểm A, B, C thẳng hàng với C thuộc hình H nào đó. Ta gọi C’ là giao điểm của AB với hình H và tìm cách chứng minh hai điểm C và C’ trùng nhau. + Phương pháp 7: Sử dụng định lý Menelaus: Cho tam giác ABC. Các điểm A’, B’, C’ lần lượt nằm trên các đường thẳng BC, CA, AB sao cho trong chúng hoặc không có điểm nào, hoặc có đúng 2 điểm thuộc các cạnh của tam giác ABC. Khi đó A’, B’, C’ thẳng hàng khi và chỉ khi. II. Một số ví dụ minh họa B. CÁC BÀI TOÁN VỀ BA ĐƯỜNG ĐỒNG QUY I. Một số phương pháp chứng minh ba đường đồng quy + Phương pháp 1: Chuyển bài toán chứng minh ba đường thẳng đồng quy về bài toán chứng minh ba điểm thẳng hàng. + Phương pháp 2: Chứng minh ba đường thẳng là đường trung tuyến, ba đường phân giác, ba đường cao, ba đường trung trực trong tam giác. + Phương pháp 3: Gọi giao điểm của hai đường thẳng là M và chứng minh đường thẳng còn lại cũng đi qua điểm M. + Phương pháp 4: Sử dụng định lí Ceva: Cho tam giác ABC. Các điểm A’, B’, C’ lần lượt thuộc các đường thẳng BC, CA, AB. Khi đó ba đường thẳng AA’, BB’, CC’ đồng quy khi và chỉ khi A B B C C A A C B A C B. II. Một số ví dụ minh họa
Tài liệu luyện thi vào lớp 10 môn Toán phần Đại số - Vũ Xuân Hưng
Tài liệu gồm 141 trang, được biên soạn bởi thầy giáo Vũ Xuân Hưng, tổng hợp kiến thức cần nhớ, các dạng bài tập và hướng dẫn giải, tuyển chọn các bài tập từ cơ bản đến nâng cao các chủ đề Đại số bậc THCS, giúp học sinh ôn tập chuẩn bị cho kỳ thi tuyển sinh vào lớp 10 môn Toán. CHUYÊN ĐỀ 1 – BIỂU THỨC CHỨA CĂN BẬC HAI. I – KIẾN THỨC CẦN NHỚ. 1. Định nghĩa căn bậc hai. 2. Các công thức vận dụng. 3. Định nghĩa căn bậc ba. 4. Tính chất của căn bậc ba. II – CÁC DẠNG BÀI TẬP CƠ BẢN. Dạng 1: Tìm điều kiện để biểu thức có nghĩa. Dạng 2: Căn bậc hai số học. Dạng 3: Tính giá trị của biểu thức. Dạng 4: Phân tích đa thức thành nhân tử. Dạng 5: Tìm x. Dạng 6: So sánh. Dạng 7: Rút gọn biểu thức và các bài tập liên quan đến rút gọn. III – BÀI TẬP TỰ LUYỆN. CHUYÊN ĐỀ 2 – HÀM SỐ BẬC NHẤT. I – KIẾN THỨC CẦN NHỚ. 1. Hàm số bậc nhất. 1.1 – Khái niệm hàm số bậc nhất. 1.2 – Tính chất. 1.3 – Đồ thị của hàm số y = ax + b (a khác 0). 1.4 – Cách vẽ đồ thị hàm số y = ax + b (a khác 0). 1.5 – Vị trí tương đối của hai đường thẳng. 1.6 – Hệ số góc của đường thẳng y = ax + b (a khác 0). II – CÁC DẠNG BÀI TẬP CƠ BẢN. Dạng 1: Xác định hàm số đã cho là hàm đồng biến – nghịch biến. Dạng 2: Vẽ đồ thị của hàm số bậc nhất và các bài toán liên quan. Dạng 3: Tìm m để hai đường thẳng cắt nhau, song song, trùng nhau. Dạng 4: Xác định hàm số bậc nhất. Dạng 5: Tìm m để khoảng cách từ gốc tọa độ đến đường thẳng lớn nhất, nhỏ nhất. Dạng 6: Xác định tham số m để đồ thị hàm số y = f(x;m) thỏa mãn một điều kiện cho trước. Dạng 7: Chứng minh 3 điểm thẳng hàng. Dạng 8: Tìm m để 3 đường thẳng đồng quy (cùng đi qua một điểm). III – BÀI TẬP TỰ LUYỆN. CHUYÊN ĐỀ 3 – HỆ PHƯƠNG TRÌNH BẬC NHẤT HAI ẨN SỐ. I – KIẾN THỨC CẦN NHỚ. 1. Giải hệ phương trình bằng phương pháp thế. 2. Giải hệ phương trình bằng phương pháp cộng đại số. II – CÁC DẠNG BÀI TẬP CƠ BẢN. Dạng 1: Giải hệ phương trình bằng phương pháp thế. Dạng 2: Giải hệ phương trình bằng phương pháp cộng đại số. Dạng 3: Giải hệ phương trình bằng phương pháp đặt ẩn phụ. Dạng 4: Xác định giá trị tham số m để hệ phương trình vô nghiệm. Dạng 5: Xác định giá trị tham số m để hệ phương trình đã cho có nghiệm duy nhất, tìm nghiệm duy nhất đó. Dạng 6: Tìm nghiệm x, y có chứa tham số m sau đó tìm GTLN hoặc GTNN của biểu thức cho trước. Dạng 7: Hệ phương trình chứa dấu giá trị tuyệt đối. III – BÀI TẬP TỰ LUYỆN. CHUYÊN ĐỀ 4 – HÀM SỐ Y = AX2 (A KHÁC 0). PHƯƠNG TRÌNH BẬC HAI MỘT ẨN. I. Hàm số y = ax2 (a khác 0). II. Phương trình bậc hai một ẩn. 1. Định nghĩa: Phương trình bậc hai một ẩn là phương trình có dạng. 2. Công thức nghiệm của phương trình bậc hai. 3. Công thức nghiệm thu gọn. 4. Hệ thức Vi-et và ứng dụng. III. Các dạng bài tập cơ bản. IV. Bài tập áp dụng. CHUYÊN ĐỀ 5 – GIẢI BÀI TOÁN BẰNG CÁCH LẬP PHƯƠNG TRÌNH – HỆ PHƯƠNG TRÌNH. I – KIẾN THỨC CẦN NHỚ. 1. Phương pháp chung. 2. Một số dạng toán thường gặp. II – BÀI TẬP MINH HỌA. Dạng 1: Bài toán hình học. Dạng 2: Bài toán tìm số. Dạng 3: Bài toán dân số, phần trăm. Dạng 4: Bài toán năng suất. Dạng 5: Bài toán chung – riêng. Dạng 6: Bài toán chuyển động. Dạng 7: Bài toán thực tế vận dụng. III – BÀI TẬP TỰ LUYỆN. CHUYÊN ĐỀ 6 – BẤT ĐẲNG THỨC – TÌM GIÁ TRỊ MIN – MAX CỦA BIỂU THỨC. I – KIẾN THỨC CẦN NHỚ. 1. Phương pháp chung. 2. Phương pháp riêng. 2.1. Sử dụng một số bất đẳng thức cổ điển thông dụng. 2.2. Bất đẳng thức Cauchy (Cosi). 2.3. Bất đẳng thức Bunhiacopski. 2.4. Bất đẳng thức Trê-B-Sép. II – BÀI TẬP MINH HỌA.