Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi chọn HSG cấp huyện lớp 12 THPT năm học 2017 - 2018 môn Toán sở GD và ĐT Cao Bằng

Đề thi chọn HSG cấp huyện lớp 12 THPT năm học 2017 – 2018 môn Toán sở GD và ĐT Cao Bằng gồm 1 trang với 7 bài toán tự luận, thời gian làm bài 180 phút (không kể thời gian giao đề), đề thi có lời giải chi tiết và thang điểm. Trích dẫn đề thi : + Một trường trung học phổ thông có 12 học sinh giỏi gồm ba học sinh khối 10, bốn học sinh khối 11 và năm học sinh khối 12. Chọn sáu học sinh trong số học sinh giỏi đó, tính xác suất sao cho cả ba khối đều có học sinh được chọn. + Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, cạnh bên SA vuông góc với mặt phẳng đáy, góc giữa mặt phẳng (SBD) và mặt phẳng đáy bằng 60 độ. [ads] a. Tính thể tích khối chóp S.ABCD b. Tính khoảng cách từ điểm D đến mặt phẳng (SBC) + Trong mặt phẳng với hệ tọa độ Oxy, cho hình bình hành ABCD. Điểm M (-3; 0) là trung điểm của cạnh AB, điểm H(0; -1) là hình chiếu vuông góc của B trên AD và điểm G(4/3; 3) là trọng tâm của tam giác BCD. Tìm tọa độ các điểm B, D.

Nguồn: toanmath.com

Đọc Sách

Đề thi chọn học sinh giỏi Toán 12 năm học 2020 - 2021 sở GDĐT Hà Nam
Ngày … tháng 09 năm 2020, sở Giáo dục và Đào tạo tỉnh Hà Nam tổ chức kỳ thi chọn học sinh giỏi lớp 12 và thành lập đội tuyển tham dự kỳ thi chọn học sinh giỏi Quốc gia môn Toán năm học 2020 – 2021. Đề thi chọn học sinh giỏi Toán 12 năm học 2020 – 2021 sở GD&ĐT Hà Nam gồm 01 trang với 05 bài toán tự luận, thang điểm 20, thời gian làm bài 180 phút. Trích dẫn đề thi chọn học sinh giỏi Toán 12 năm học 2020 – 2021 sở GD&ĐT Hà Nam : + Xếp 35 học sinh, trong đó có bốn bạn Dũng, Minh, Công, Đoàn thành một hàng ngang. Hỏi có tất cả bao nhiêu cách xếp hàng, mà trong mỗi cách xếp hàng không có ba bạn nào trong bốn bạn Dũng, Minh, Công, Đoàn đứng ở ba vị trí liên tiếp. + Cho hàm số f(x) = (x^3 – 3x^2 + 3x + 5)/(x + 1). 1. Chứng minh đồ thị hàm số có ba điểm cực trị không thẳng hàng. 2. Gọi A, B, C là ba điểm cực trị của đồ thị hàm số. Tính diện tích tam giác ABC. + Cho tứ giác ABCD cố định, có hai đường chéo AC, BD cắt nhau tại P. Đường trung trực của các đoạn thẳng AC và BD cắt nhau tại K. Một đường thẳng d thay đổi đi qua K, cắt đường tròn ngoại tiếp tam giác OAB tại Q, R. Chứng minh rằng trực tâm của tam giác POR luôn nằm trên một đường tròn cố định, khi đường thẳng d thay đổi.
Đề thi HSG Toán 12 năm 2020 - 2021 trường THPT chuyên Lê Khiết - Quảng Ngãi
Thứ Bảy ngày 19 tháng 09 năm 2020, trường THPT chuyên Lê Khiết, tỉnh Quảng Ngãi tổ chức kỳ thi chọn học sinh giỏi lớp 12 môn Toán năm học 2020 – 2021. Đề thi HSG Toán 12 năm 2020 – 2021 trường THPT chuyên Lê Khiết – Quảng Ngãi gồm 01 trang với 07 bài toán dạng tự luận, thời gian làm bài 180 phút (không kể thời gian phát đề). Trích dẫn đề thi HSG Toán 12 năm 2020 – 2021 trường THPT chuyên Lê Khiết – Quảng Ngãi : + Cho một đa giác đều có 170 đường chéo. Chọn ngẫu nhiên 3 đỉnh từ các đỉnh của đa giác đó. Tính xác suất để tam giác tạo ra từ các đỉnh được chọn là tam giác vuông không cân. + Có bao nhiêu số nguyên dương n < 2021 để đa thức x^2^n + x + 1 chia hết cho đa thức x^2 + x + 1? + Trên bảng có ghi mười số 1; 2; 3; 4; . . . ; 10. Ở mỗi bước ta xóa đi hai số a, b rồi thêm vào số mới a + b + ab/f(a;b) với f(a;b) là tổng tất cả các số còn ghi trên bảng trừ hai số a, b. Cứ làm như thế cho đến khi trên bảng chỉ còn hai số x, y (x >= y). a) Gọi Sk là tổng của tất cả các tích của các cặp số còn ghi trên bảng ở bước thứ k. Chứng minh rằng Si = Sk với mọi i, k. b) Tìm giá trị lớn nhất có thể có của x.
Đề thi thử HSG Toán vòng 1 lần 2 năm 2020 - 2021 trường chuyên Hùng Vương - Bình Dương
Ngày … tháng 09 năm 2020, trường THPT chuyên Hùng Vương, tỉnh Bình Dương tổ chức kỳ thi thử cho đội tuyển học sinh giỏi môn Toán vòng 1 lần 2 năm học 2020 – 2021. Đề thi thử HSG Toán vòng 1 lần 2 năm 2020 – 2021 trường chuyên Hùng Vương – Bình Dương gồm có 01 trang với 04 bài toán dạng tự luận, thời gian làm bài 180 phút (không kể thời gian phát đề), thí sinh không được sử dụng tài liệu và máy tính khi làm bài. Trích dẫn đề thi thử HSG Toán vòng 1 lần 2 năm 2020 – 2021 trường chuyên Hùng Vương – Bình Dương : + Cho tam giác ABC nhọn nội tiếp đường tròn (O), có trực tâm H. Gọi M, N, P lần lượt là trung điểm của BC, CA, AB. Đường tròn (MNP) lần lượt cắt các đường tròn (MCA), (MAB) tại điểm thứ hai là E, F. Giả sử ME, MF theo thứ tự cắt AC, AB tại K, L. a) Chứng minh rằng OH vuông góc với KL tại điểm S. b) Gọi G là trọng tâm của tam giác ABC. Các điểm Y, Z lần lượt là hình chiếu của B, C lên AC, AB. Gọi X là giao điểm của KZ và LY. Chứng minh rằng A, G, S, X cùng nằm trên một đường tròn. + Tìm tất cả các đa thức P(x) với hệ số thực sao cho P(a)^2 + P(b)^2 + P(c)^2 với mọi bộ số (a;b;c) thỏa mãn ab + bc + ca + 1 = 0. + Tìm tất cả các bộ ba số tự nhiên (m;n;k) thỏa mãn 5^m + 7^n = k^3.
Đề thi HSG Toán 12 (vòng 2) năm 2020 - 2021 trường chuyên Nguyễn Du - Đắk Lắk
Thứ Năm ngày 10 tháng 09 năm 2020, trường THPT chuyên Nguyễn Du, tỉnh Đắk Lắk tổ chức kỳ thi chọn đội tuyển học sinh giỏi môn Toán lớp 12 năm học 2020 – 2021 vòng thi số 2. Đề thi HSG Toán 12 (vòng 2) năm 2020 – 2021 trường chuyên Nguyễn Du – Đắk Lắk được biên soạn theo dạng đề tự luận, đề thi gồm có 01 trang với 05 bài toán, thời gian học sinh làm bài thi là 180 phút. Trích dẫn đề thi HSG Toán 12 (vòng 2) năm 2020 – 2021 trường chuyên Nguyễn Du – Đắk Lắk : + Cho tam giác ABC (AC > AB). Lấy hai điểm M, N lần lượt trên AB và AC sao cho MN song song với BC. Gọi P là giao điểm của hai đoạn thẳng BN và CM. Gọi A’ là điểm đối xứng của A qua đường thẳng BC; (w) là đường tròn ngoại tiếp tam giác AMN. a) Gọi E là điểm thuộc đường tròn (w) sao cho AE // MN. Chứng minh rằng: E, P, A’ thẳng hàng. b) Gọi F là giao điểm thứ hai của A’P với đường tròn (w) và I là tâm đường tròn ngoại tiếp tam giác AA’F. Chứng minh IF tiếp xúc với đường tròn ngoại tiếp tam giác BFC. + Cho tập hợp A = {1;2; . . . ; 101}, tô màu ít nhất 50 phần tử của A sao cho: nếu a và b thuộc A (a, b không nhất thiết phân biệt) được tô màu và a + b thuộc A thì a + b cũng được tô màu. Gọi S là tổng tất cả các số không được tô màu của A. Tìm giá trị lớn nhất của S. + Tìm tất cả n tự nhiên để 2^2^2^ . . .  ^2 (n số 2) – 2 viết được thành a^3 + b^3 + c^3 với a, b, c nguyên.