Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề chứng minh đẳng thức và tính giá trị biểu thức Nguyễn Quốc Bảo

Nội dung Chuyên đề chứng minh đẳng thức và tính giá trị biểu thức Nguyễn Quốc Bảo Bản PDF - Nội dung bài viết Chuyên đề chứng minh đẳng thức và tính giá trị biểu thức - Nguyễn Quốc BảoChủ đề I. Chứng minh đẳng thứcChủ đề II. Tính giá trị biểu thức một biếnChủ đề III. Tính giá trị biểu thức nhiều biến có điều kiện Chuyên đề chứng minh đẳng thức và tính giá trị biểu thức - Nguyễn Quốc Bảo Tài liệu này được biên soạn bởi thầy giáo Nguyễn Quốc Bảo, với mục đích hướng dẫn học sinh cách giải các dạng toán chuyên đề chứng minh đẳng thức và tính giá trị biểu thức. Tài liệu gồm 94 trang, phù hợp cho học sinh lớp 8, lớp 9 và cả những ai muốn ôn thi vào lớp 10 môn Toán. Mục lục của tài liệu bao gồm các chủ đề sau: Chủ đề I. Chứng minh đẳng thức Dạng 1: Sử dụng phép biến đổi thương đương Dạng 2: Sử dụng hằng đẳng thức quen biết Dạng 3: Sử dụng phương pháp đổi biến Dạng 4: Sử dụng bất đẳng thức Dạng 5: Sử dụng lượng liên hợp ... (và các dạng khác) Chủ đề II. Tính giá trị biểu thức một biến Dạng 1: Tính giá trị biểu thức chứa đa thức Dạng 2: Tính giá trị biểu thức chứa căn thức Dạng 3: Tính giá trị biểu thức có biến là nghiệm của phương trình ... (và các dạng khác) Chủ đề III. Tính giá trị biểu thức nhiều biến có điều kiện Dạng 1: Sử dụng phương pháp phân tích Dạng 2: Sử dụng phương pháp hệ số bất định Dạng 3: Sử dụng phương pháp hình học ... (và các dạng khác) Mỗi chủ đề trong tài liệu đều được chia thành ba phần: Kiến thức cần nhớ: Tóm tắt những kiến thức cơ bản và bổ sung để giải các bài tập thuộc các dạng toán Một số ví dụ: Cung cấp ví dụ minh họa để học sinh hiểu rõ về kỹ năng và phương pháp giải Bài tập vận dụng: Hệ thống bài tập phân loại theo độ khó, bao gồm cả các bài tập từ đề thi học sinh giỏi và đề thi vào lớp 10 chuyên Toán Tài liệu này sẽ giúp học sinh nắm vững kiến thức, rèn luyện kỹ năng giải toán, và chuẩn bị tốt cho kỳ thi sắp tới. Cùng với sự hướng dẫn cụ thể và ví dụ minh họa, việc ôn tập sẽ trở nên dễ dàng và hiệu quả hơn.

Nguồn: sytu.vn

Đọc Sách

Các bài toán về tam giác đặc sắc
Tài liệu gồm 90 trang, tuyển chọn các bài toán về tam giác đặc sắc hay và khó, có đáp án và lời giải chi tiết, giúp học sinh tham khảo trong quá trình ôn tập thi vào lớp 10 môn Toán và ôn thi học sinh giỏi môn Toán bậc THCS. I. HỆ THỐNG KIẾN THỨC CƠ BẢN VỀ TAM GIÁC 1. Tổng ba góc trong một tam giác. 2. Hai tam giác bằng nhau. a. Hai tam giác bằng nhau. b. Các trường hợp bằng nhau của hai tam giác. c. Các trường hợp bằng nhau của tam giác vuông. 3. Quan hệ giữa các yếu tố trong tam giác. a. Quan hệ giữa góc và cạnh đối diện trong một tam giác. b. Quan hệ giữa đường vuông góc và đường xiên, đường xiên và hình chiếu. c. Quan hệ giữa ba cạnh của một tam giác, bất đẳng thức tam giác. 4. Các đường đồng quy trong tam giác. a. Ba đường trung tuyến của tam giác. b. Ba đường phân giác của tam giác. c. Ba đường trung trực của tam giác. d. Ba đường cao của tam giác. 5. Tam giác đồng dạng. a. Định lí Talets trong tam giác. b. Tính chất đường phân giác trong tam giác. c. Tam giác đồng dạng. 6. Hệ thức lượng trong tam giác. a. Hệ thức liên hệ giữa cạnh, đường cao và hình chiếu trong tam giác vuông. b. Tỉ số lượng giác của góc nhọn. c. Tỉ số lượng giác của hai góc phụ nhau. d. Một số hệ thức lượng giác. e. Liên hệ giữa cạnh và góc trong tam giác vuông. II. MỘT SỐ KIẾN THỨC NÂNG CAO THƯỜNG ÁP DỤNG 1. Các công thức về đường cao, đường trung tuyến, đường phân giác trong tam giác. 2. Các công thức về lượng giác trong tam giác. 3. Các định lí hình học nổi tiếng trong tam giác. III. CÁC THÍ DỤ MINH HỌA IV. BÀI TẬP TỰ LUYỆN V. HƯỚNG DẪN GIẢI
Một số bài toán về đường tròn
Tài liệu gồm 116 trang, tuyển chọn một số bài toán về đường tròn hay và khó, có đáp án và lời giải chi tiết, giúp học sinh tham khảo trong quá trình ôn tập thi vào lớp 10 môn Toán và ôn thi học sinh giỏi môn Toán bậc THCS. A. MỘT SỐ KIẾN THỨC CẦN NHỚ I. Sự xác định đường tròn. 1. Định nghĩa. 2. Vị trí tương đối của một điểm đối với một đường tròn. 3. Cách xác định đường tròn. 4. Tính chất đối xứng của đường tròn. II. Liên hệ giữa đường kính và dây cung. 1. So sánh độ dài của đường kính và dây. 2. Quan hệ vuông góc giữa đường kính và dây. 3. Liên hệ giữa dây và khoảng cách từ tâm đến dây. III. Ví trí tương đối của đường thẳng và đường tròn. 1. Vị trí tương đối của đường thẳng và đường tròn. 2. Dấu hiệu nhận biết tiếp tuyến của đường tròn. 3. Tính chất của hai tiếp tuyến cắt nhau. 4. Đường tròn nội tiếp tam giác. 5. Đường tròn bàng tiếp tam giác. IV. Vị trí tương đối của hai đường tròn. 1. Tính chất đường nối tâm. 2. Vị trí tương đối của hai đường tròn. 3. Tiếp tuyến chung của hai đường tròn. V. Góc với đường tròn. 1. Góc ở tâm. 2. Góc nội tiếp. 3. Góc tạo bởi tia tiếp tuyến với dây cung. 4. Góc có đỉnh ở bên trong đường tròn và góc có đỉnh ở bên ngoài đừng tròn. 5. Tứ giác nội tiếp. 6. Đường tròn ngoại tiếp, đường tròn nội tiếp. 7. Độ dài đường tròn, cung tròn. Diện tích hình tròn, hình quạt tròn. VI. Một số kiến thức bổ sung. 1. Một số tính chất về tiếp tuyến. 2. Một số dấu hiệu nhận biết tứ giác nội tiếp. 3. Một số định lí hình học nổi tiếng. B. MỘT SỐ VÍ DỤ MINH HỌA C. BÀI TẬP TỰ LUYỆN D. HƯỚNG DẪN GIẢI
Các dạng toán thực tế ôn thi vào lớp 10 môn Toán
Tài liệu gồm 188 trang, tuyển tập các dạng toán thực tế ôn thi vào lớp 10 môn Toán, có đáp án và lời giải chi tiết. Dạng toán 1 : Dạng toán chuyển động. Phương pháp giải: Chú ý dựa vào công thức S = vt, trong đó S là quãng đường, v là vận tốc và t là thời gian. Ngoài ra, theo nguyên lí cộng vận tốc trong bài toán chuyển động tàu, thuyền trên mặt nước, ta có: + Vận tốc xuôi dòng = vận tốc thực + vận tốc dòng nước. + Vận tốc ngược dòng = vận tốc thực – vận tốc dòng nước. + Vận tốc thực luôn lớn hơn vận tốc dòng nước. Dạng toán 2 : Dạng toán năng suất – công việc. Phương pháp giải: + Coi khối lượng công việc là 1 đơn vị. + NS 1 + NS 2 = tổng NS. + x giờ (ngày) làm xong CV thì mỗi giờ (ngày) làm được 1/x CV đó. + 1 giờ (ngày) làm được 1/x CV thì a giờ (ngày) làm được a.1/x CV. Dạng toán 3 : Dạng toán liên quan đến tuổi. Trích dẫn: Ở một trường Trung học cơ sở, tuổi trung bình của các giáo viên nữ trong trường là 36, tuổi trung bình của các giáo viên nam trong trường là 40. Tính tuổi trung bình của các giáo viên nam và các giáo viên nữ biết rằng số giáo viên nữ gấp ba lần số giáo viên nam? Dạng toán 4 : Dạng toán liên quan đến kinh doanh. Trích dẫn: Nhà may A sản xuất một lô áo gồm 200 chiếc áo với giá vốn là 30 000 000 (đồng) và giá bán mỗi chiếc áo sẽ là 300 000 (đồng). Khi đó gọi K (đồng) là số tiền lời (hoặc lỗ) của nhà may thu được khi bán t chiếc áo. a) Thiết lập hàm số của K theo t. b) Hỏi cần phải bán bao nhiêu chiếc áo mới có thể thu hồi được vốn ban đầu? c) Để lời được 6 000 000 đồng thì cần phải bán bao nhiêu chiếc áo? Dạng toán 5 : Dạng toán hình học. Trích dẫn: Có hai lọ thủy tinh hình trụ, lọ thứ nhất phía bên trong có đường kính đáy là 30cm, chiều cao 20cm, đựng đầy nước. Lọ thứ hai bên trong có đường kính đáy là 40cm, chiều cao 12cm. Hỏi nếu đổ hết nước từ trong lọ thứ nhất sang lọ thứ hai nước có bị tràn ra ngoài không? Tại sao? (Lấy π ≈ 3,14). Dạng toán 6 : Dạng toán liên quan đến bộ môn Hóa học. Trích dẫn: Người ta đổ thêm 100 g nước vào một dung dịch chứa 20 g muối thì nồng độ của dung dịch giảm đi 10% . Hỏi trước khi đổ thêm nước thì dung dịch chứa bao nhiêu nước. Dạng toán 7 : Dạng toán liên quan đến bộ môn Vật lý. Trích dẫn: Để ước tính tốc độ s (dặm/giờ) của một chiếc xe, cảnh sát sử dụng công thức: s với d (tính bằng feet) là độ dài vết trượt của bánh xe và f là hệ số ma sát. a) Trên một đoạn đường (có gắn bảng báo tốc độ bên trên) có hệ số ma sát là 0,73 và vết trượt của một xe 4 bánh sau khi thắng lại là 49,7 feet. Hỏi xe có vượt quá tốc độ theo biển báo trên đoạn đường đó không? b) Nếu xe chạy với tốc độ 48km/h trên đoạn đường có hệ số ma sát là 0,45 thì khi thắng lại vết trượt trên đường dài bao nhiêu feet? Dạng toán 8 : Dạng toán tổng hợp. Để biết được ngày n tháng t năm 2020 là ngày thứ mấy trong tuần. Đầu tiên, đi tính giá trị biểu thức T, ở đây được xác định như sau. Sau đó lấy T chia cho 7 ta được số dư r. Nếu r = 0 thì ngày đó là ngày thứ Bảy. Nếu r = 1 thì ngày đó là ngày Chủ Nhật. Nếu r = 2 thì ngày đó là ngày thứ Hai. Nếu r = 3 thì ngày đó là ngày thứ Ba. Nếu r = 6 thì ngày đó là ngày thứ Sáu. Hãy sử dụng quy tắc trên để xác định ngày 30 / 4 / 2020 là ngày thứ mấy?
Phân loại theo chương, bài các đề tuyển sinh lớp 10 môn Toán năm học 2020 - 2021
Tài liệu gồm 224 trang, được tổng hợp bởi thầy giáo Diệp Tuân, phân loại theo chương, bài các đề tuyển sinh lớp 10 môn Toán năm học 2020 – 2021. Chương 1. Các lớp 6 – 7 – 8. Chương 2. Căn thức bậc hai. Chương 3. Hàm số bậc nhất. Chương 4. Hệ hai phương trình bậc nhất hai ẩn. Chương 5. Hàm số y = ax^2 (a khác 0) – phương trình bậc hai. Chương 6. Hệ thức lượng trong tam giác vuông. Chương 7. Đường tròn. Chương 8. Góc với đường tròn. Chương 9. Hình trụ – hình nón – hình cầu. Chương 10. Bất đẳng thức.