Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi lớp 9 môn Toán năm 2022 2023 trường THCS Lý Nhật Quang Nghệ An (vòng 2)

Nội dung Đề học sinh giỏi lớp 9 môn Toán năm 2022 2023 trường THCS Lý Nhật Quang Nghệ An (vòng 2) Bản PDF - Nội dung bài viết Đề thi học sinh giỏi Toán lớp 9 trường THCS Lý Nhật Quang Nghệ An (vòng 2) năm 2022 - 2023 Đề thi học sinh giỏi Toán lớp 9 trường THCS Lý Nhật Quang Nghệ An (vòng 2) năm 2022 - 2023 Xin chào quý thầy cô và các em học sinh lớp 9! Hôm nay, Sytu xin giới thiệu đến bạn đề thi chọn học sinh dự thi học sinh giỏi cấp tỉnh môn Toán lớp 9 năm học 2022-2023 tại trường THCS Lý Nhật Quang, huyện Đô Lương, tỉnh Nghệ An (vòng 2) với những câu hỏi thú vị và hấp dẫn sau: 1. Cho số nguyên tố P = abc với a, b, c là ba chữ số. Chứng minh rằng phương trình ax2 + bx + c = 0 không có nghiệm hữu tỷ. 2. Có tổng cộng 48 quả cân có khối lượng từ 1g đến 48g. Hãy phân chia tất cả các quả cân đó thành ba nhóm sao cho tổng khối lượng của từng nhóm bằng nhau. 3. Ban Giám hiệu trường THCS Lý Nhật Quang dự định mời 100 đại biểu đến dự sự kiện. Mỗi người trong số đó quen biết ít nhất 50 người khác. Chứng minh rằng Ban Giám Hiệu có thể xếp 4 người vào một bàn tròn sao cho mỗi người ngồi giữa hai người quen của mình. Đây sẽ là một cơ hội tuyệt vời để các em thể hiện tài năng và kiến thức Toán của mình. Chúc các em học tập tốt và thành công trong kỳ thi sắp tới! Xin cám ơn!

Nguồn: sytu.vn

Đọc Sách

Đề khảo sát CLB Toán 9 năm 2022 - 2023 trường THCS Cầu Giấy - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề khảo sát câu lạc bộ văn hóa môn Toán 9 năm học 2022 – 2023 trường THCS Cầu Giấy, thành phố Hà Nội; kỳ thi được diễn ra vào ngày 06 tháng 09 năm 2022. Trích dẫn đề khảo sát CLB Toán 9 năm 2022 – 2023 trường THCS Cầu Giấy – Hà Nội : + Cho số nguyên dương n thỏa mãn (n2 – 1)/3 là tích của hai số tự nhiên liên tiếp. Chứng minh rằng n là tổng của hai số chính phương liên tiếp. + Cho tam giác ABC vuông tại A (AB < AC), đường cao AH (H thuộc BC). a) Chứng minh rằng BH.BC = BA2. b) Gọi D là điểm đối xứng với A qua B, E là điểm đối xứng với A qua H. Chứng minh rằng BHD đồng dạng với BDC. c) Gọi I là giao điểm của AB và CD. K là điểm thuộc cạnh AD sao cho IK vuông góc với CD. Chứng minh rằng HA CD HI CI và HK vuông góc với HD. + Sau khi lựa chọn các học sinh cho lớp CLB Toán 9, giáo viên nhận thấy rằng: (i) Trong lớp CLB có ít nhất hai bạn quen nhau. (ii) Nếu hai bạn có cùng số lượng người quen thì không có người quen chung. Chứng minh rằng có một học sinh của lớp chỉ quen đúng một người.
Đề học sinh giỏi Toán 9 năm 2022 - 2023 trường THCS Phú Thái - Hải Dương
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề khảo sát chất lượng học sinh giỏi môn Toán 9 năm học 2022 – 2023 trường THCS Phú Thái, huyện Kim Thành, tỉnh Hải Dương. Trích dẫn đề học sinh giỏi Toán 9 năm 2022 – 2023 trường THCS Phú Thái – Hải Dương : + Cho a, b là các số nguyên thỏa mãn 2a2 + 3ab + 2b2 chia hết cho 7. Chứng minh rằng a2 – b2 chia hết cho 7. + Tìm nghiệm nguyên của phương trình: 5×2 + 5y2 + 6xy – 20x – 20y + 24 = 0. + Cho đường tròn (O;R) đường kính BC, A là điểm chuyển động trên đường tròn (O;R). H là hình chiếu vuông góc của điểm A trên BC. Gọi (Q;r); (I;r1); (K;r2) là các đường tròn nội tiếp tam giác ABC; tam giác AHB, tam giác AHC. Đường thẳng KI cắt AB và AC lần lượt tại M và N. a) Chứng minh rằng tam giác AMN vuông cân. b) Tính r + r1 + r2 theo R trong trường hợp H là trung điểm của OB. c) Gọi E là giao điểm AI và BC, F là giao điểm của AK và BC. Xác định vị trí của A để diện tích tam giác AEF đạt giá trị lớn nhất.
Đề học sinh giỏi Toán 9 năm 2022 - 2023 phòng GDĐT thành phố Hải Dương
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán 9 năm học 2022 – 2023 phòng Giáo dục và Đào tạo thành phố Hải Dương; kỳ thi được diễn ra vào ngày 02 tháng 06 năm 2022. Trích dẫn đề học sinh giỏi Toán 9 năm 2022 – 2023 phòng GD&ĐT thành phố Hải Dương : + Tìm các cặp số nguyên (x;y) thỏa mãn: 2×3 – (y + 3)x2 + 3x – 2y = 1. + Cho a, b, c, d là các số nguyên dương thỏa mãn: 2a3 + 6b3 + 22c3 = 23d3. Chứng minh rằng 2a + 6b + 22c + d là hợp số. + Cho tam giác ABC vuông tại A (AB < AC) đường cao AH. Gọi E và F lần lượt là hình chiếu vuông góc của H trên AC và AB. Gọi I là giao điểm của AH và EF, BI cắt AC tại P, CI cắt AB tại K. Đường thẳng qua A song song BI cắt đường thẳng BC tại Q. 1) Chứng minh B là trung điểm của QH. 2) Chứng minh. 3) Gọi M là giao điểm của hai đường thẳng EF và BC, O là trung điểm của BC, D là hình chiếu vuông góc của H trên AM. Chứng minh I là trực tâm của tam giác AMO và BDC = 90°.
Đề học sinh giỏi huyện môn Toán năm 2021 - 2022 phòng GDĐT Di Linh - Lâm Đồng
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp huyện môn Toán năm học 2021 – 2022 phòng Giáo dục và Đào tạo huyện Di Linh, tỉnh Lâm Đồng; kỳ thi được diễn ra vào ngày 30 tháng 12 năm 2021. Trích dẫn đề học sinh giỏi huyện môn Toán năm 2021 – 2022 phòng GD&ĐT Di Linh – Lâm Đồng : + Cho tam giác ABC, đường cao AH. Gọi E và M lần lượt là trung điểm của AB và BC. Qua B kẻ đường thẳng vuông góc với BC và cắt đường thẳng AC tại D, đường thẳng ME cắt BD tại I. Gọi K là giao điểm của AH và CI. Chứng minh K là trung điểm của AH. + Cho a, b,c đôi một khác nhau thỏa: a² – b = b² – c = c² – a. Chứng minh:(a + b)(b + c)(c + a) = 1. + Gia đình bác An có nuôi 3 con bò sữa để tăng thêm thu nhập cho gia đình, trung bình mỗi con bò cho khoảng 2500 lít sữa/năm và bán được khoảng 15500 đồng/lít. Biết rằng tiền chi phí đầu tư, chăm sóc mỗi năm bằng 40% tiền bán sữa. Hãy tính xem mỗi năm gia đình bác An thu nhập thêm được bao nhiêu tiền?