Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi HSG lớp 9 môn Toán năm 2022 2023 trường THCS Phan Ngọc Hiển Cà Mau

Nội dung Đề thi HSG lớp 9 môn Toán năm 2022 2023 trường THCS Phan Ngọc Hiển Cà Mau Bản PDF - Nội dung bài viết Đề thi HSG Toán lớp 9 năm 2022 - 2023 trường THCS Phan Ngọc Hiển - Cà Mau Đề thi HSG Toán lớp 9 năm 2022 - 2023 trường THCS Phan Ngọc Hiển - Cà Mau Xin chào quý thầy cô và các bạn học sinh lớp 9! Hôm nay, chúng ta sẽ cùng tìm hiểu về đề thi chọn học sinh giỏi cấp trường môn Toán lớp 9 năm học 2022 - 2023 tại trường THCS Phan Ngọc Hiển, huyện Năm Căn, tỉnh Cà Mau. Đề thi này bao gồm nhiều câu hỏi thú vị và thách thức, hướng dẫn cụ thể cách giải và thang điểm chi tiết để giúp các em rèn luyện kỹ năng giải toán một cách hiệu quả. Dưới đây là một số ví dụ câu hỏi trong đề thi: 1. Ông Huy có 24m hàng rào muốn rào một sân vườn hình chữ nhật sao cho diện tích lớn nhất. Hỏi kích thước sân vườn đó? 2. Tứ giác ABCD có độ dài hai đường chéo là m và n. Chứng minh diện tích S của tứ giác ABCD là 1/2 mn.sin(2α). 3. Cho đường tròn (O) đường kính AB, điểm C nằm giữa A và O. Tiếp theo là câu hỏi về chứng minh tứ giác ADCE là hình thoi, ba điểm E, C, K thẳng hàng, và một số yêu cầu khác liên quan đến đường tròn và hình học. Hy vọng rằng, việc ôn tập và giải đề thi này sẽ giúp các em nắm vững kiến thức và rèn luyện kỹ năng giải toán một cách linh hoạt. Chúc các em thành công và đạt kết quả cao trong kỳ thi sắp tới!

Nguồn: sytu.vn

Đọc Sách

Đề HSG Toán 9 vòng 1 năm 2020 - 2021 trường Nguyễn Tất Thành - Hà Nội
Đề HSG Toán 9 vòng 1 năm học 2020 – 2021 trường THCS&THPT Nguyễn Tất Thành – Hà Nội gồm 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 90 phút, kỳ thi được diễn ra vào ngày 15 tháng 09 năm 2020.
Đề chọn học sinh giỏi Toán THCS năm 2020 - 2021 phòng GDĐT thành phố Vĩnh Long
Đề chọn học sinh giỏi Toán THCS năm 2020 – 2021 phòng GD&ĐT thành phố Vĩnh Long gồm 01 trang với 06 bài toán tự luận, thời gian làm bài 150 phút, kỳ thi được diễn ra vào Chủ Nhật ngày 06 tháng 12 năm 2020. Trích dẫn đề chọn học sinh giỏi Toán THCS năm 2020 – 2021 phòng GD&ĐT thành phố Vĩnh Long : + Chứng minh rằng với mọi số nguyên n thì n^2 + n + 2 không chia hết cho 3. + Tìm các số nguyên x; y thỏa mãn y^2 + 2xy – 3x – 2 = 0. + Cho hình thang ABCD (AB // CD) có D = 60°, C = 30°, AB = 2cm, CD = 6cm. Tính diện tích hình thang ABCD. + Cho điểm M thuộc đường tròn (O) và đường kính AB (M khác A, M khác B và MA = MB). Tia phân giác của góc AMB cắt AC tại C. Qua C vẽ đường thẳng vuông góc với AB cắt các đường thẳng AM và BM lần lượt tại D và H. a) Chứng minh hai đường thẳng AH và BD cắt nhau tại điểm N nằm trên đường tròn (O). b) Gọi E là hình chiếu của H trên tiếp tuyến tại A của đường tròn (O). Chứng minh tứ giác ACHE là hình vuông. c) Gọi F là hình chiếu của D trên tiếp tuyến tại B của đường tròn (O). Chứng minh bốn điểm E, M, N, F thẳng hàng.
Đề chọn HSG Toán 9 vòng 2 năm 2020 - 2021 phòng GDĐT Thường Tín - Hà Nội
Đề chọn HSG Toán 9 vòng 2 năm 2020 – 2021 phòng GD&ĐT Thường Tín – Hà Nội gồm 04 bài toán dạng tự luận, thời gian làm bài 150 phút. Trích dẫn đề chọn HSG Toán 9 vòng 2 năm 2020 – 2021 phòng GD&ĐT Thường Tín – Hà Nội : + Cho một điểm C di động trên đường tròn tâm O, đường kính AB = 2R. I là tâm đường tròn nội tiếp tam giác ABC, vẽ CH vuông góc với AB tại H. 1. Vẽ CM song song với BI (M thuộc AI); lấy điểm F thuộc AB sao cho AC = AF. Tính CMF. 2. P thuộc tia đối của tia AC sao cho AP = AC; Q là trung điểm của HB. Chứng minh rằng PH vuông góc với CQ. 3. K tâm đường tròn nội tiếp tam giác AHC; CK cắt AB tại E. Tìm vị trí của C trên cung AB để diện tích tam giác CEF đạt giá trị lớn nhất. 4. Chứng minh rằng MH, BI, CF đồng quy. + Cho số nguyên tố p và hai số nguyên dương x, y thỏa mãn 4×2 −3xy − y2 − p (3x + 2y) = 2p2. Chứng minh rằng 5x − 1 là số chính phương. + Cho x, y, z là các số nguyên thỏa mãn (x − y) (y − z) (z − x) = x + y + z. Chứng minh rằng x + y + z chia hết cho 27.
Đề học sinh giỏi Toán 9 năm 2020 - 2021 phòng GDĐT Cầu Giấy - Hà Nội
Thứ Bảy ngày 31 tháng 10 năm 2020, phòng Giáo dục và Đào tạo quận Cầu Giấy, thành phố Hà Nội tổ chức kỳ thi chọn học sinh giỏi lớp 9 cấp quận môn Toán năm học 2020 – 2021. Đề học sinh giỏi Toán 9 năm 2020 – 2021 phòng GD&ĐT Cầu Giấy – Hà Nội gồm 01 trang với 04 bài toán dạng tự luận, thời gian học sinh làm bài thi là 120 phút. Trích dẫn đề học sinh giỏi Toán 9 năm 2020 – 2021 phòng GD&ĐT Cầu Giấy – Hà Nội : + Giải phương trình sau: x^2(x^2 + 2) = 12 – x√(2x^2 + 4). + Cho a, b, c, d là các số tự nhiên thỏa mãn điều kiện a^2 + b^2 + c^2 = d^2. Chứng minh rằng a, b, c, d không thể đồng thời là các số lẻ. + Cho hình bình hành ABCD (A nhọn, AB > AD), hai đường chéo AC và BD cắt nhau tại O. Đường thẳng đi qua C và vuông góc với AC cắt đường thẳng đi qua A và vuông góc với BD tại điểm P, từ P vẽ PM vuông góc với BC (M thuộc đường thẳng BC) và PN vuông góc với CD (N thuộc đường thẳng CD). Gọi S là hình chiếu của B trên AC. a. Chứng minh rằng CBS đồng dạng PCM và ACP đồng dạng BSO. b. Chứng minh rằng AB^2 – BC^2 = 2CP.BS. c. Chứng minh rằng M, N, O thẳng hàng.