Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tài liệu lớp 9 môn Toán chủ đề rút gọn biểu thức chứa căn thức bậc hai

Nội dung Tài liệu lớp 9 môn Toán chủ đề rút gọn biểu thức chứa căn thức bậc hai Bản PDF - Nội dung bài viết Tài liệu Tối ƒnghiệp về Rút Gọn Biểu Thông Chứa Căn Thức Bậc Hai Tài liệu Tối ƒnghiệp về Rút Gọn Biểu Thông Chứa Căn Thức Bậc Hai Tài liệu này được thiết kế đặc biệt cho học sinh lớp 9, cung cấp kiến thức cơ bản và bài tập thực hành về chủ đề rút gọn biểu thức chứa căn thức bậc hai trong môn Toán. Tài liệu gồm tổng cộng 22 trang, bao gồm kiến thức cần nhớ, các dạng toán và bài tập hướng dẫn chi tiết. Kiến Thức Cần Nhớ: Quy trình rút gọn biểu thức chứa căn thức bậc hai bao gồm các bước sau: Tìm điều kiện xác định của biểu thức. Phân tích tử số và mẫu số thành nhân tử rồi rút gọn nếu có thể. Quy đồng. Phá ngoặc bằng cách nhân khai trển các hạng tử với nhau hoặc khi triển hằng đẳng thức. Thu gọn bằng cách cộng, trừ các hạng tử đồng dạng. Phân tích tử thành nhân tử. Rút gọn lần cuối. Các Dạng Toán: Trong tài liệu này, học sinh sẽ được hướng dẫn về các dạng toán sau: Rút gọn biểu thức chứa căn bậc hai và tìm giá trị của biểu thức khi biết giá trị của biến. Rút gọn biểu thức chứa căn bậc hai và tìm giá trị của biến khi biết giá trị của biểu thức. Rút gọn biểu thức chứa căn bậc hai và tìm giá trị của biến để biểu thức nhận giá trị nguyên. Rút gọn biểu thức chứa căn bậc hai và so sánh biểu thức với một số (hoặc một biểu thức khác). Rút gọn biểu thức chứa căn bậc hai và tìm giá trị nhỏ nhất hoặc lớn nhất của biểu thức. Bài Tập Tổng Hợp: Tài liệu cũng cung cấp một loạt bài tập trắc nghiệm và tự luyện để học sinh có thể ôn tập và áp dụng kiến thức đã học vào thực tế. Để thuận tiện cho việc sử dụng, tài liệu còn được cung cấp dưới dạng file Word cho quý thầy, cô giáo có thể sử dụng để in và phát cho học sinh. Với tài liệu này, học sinh sẽ có cơ hội nâng cao kiến thức và kỹ năng giải toán rút gọn biểu thức chứa căn thức bậc hai một cách hiệu quả.

Nguồn: sytu.vn

Đọc Sách

Tài liệu lớp 9 môn Toán chủ đề hàm số và đồ thị hàm số y = ax2 (a khác 0)
Nội dung Tài liệu lớp 9 môn Toán chủ đề hàm số và đồ thị hàm số y = ax2 (a khác 0) Bản PDF - Nội dung bài viết Tài liệu lớp 9 môn Toán chủ đề hàm số và đồ thị hàm số y = ax^2 (a khác 0)A. Các kiến thức cần nhớB. Bài tập áp dụng Tài liệu lớp 9 môn Toán chủ đề hàm số và đồ thị hàm số y = ax^2 (a khác 0) Trong tài liệu này, bạn sẽ được giới thiệu đến kiến thức cơ bản về hàm số và đồ thị hàm số y = ax^2 (a khác 0) trong chương trình môn Toán lớp 9. Tài liệu bao gồm 20 trang, bao gồm các kiến thức cần nhớ, các dạng toán và bài tập thực hành có đáp án và lời giải chi tiết. Để hiểu rõ hơn về chủ đề này, hãy cùng điểm qua một số điểm chính sau: A. Các kiến thức cần nhớ Tính chất của hàm số y = ax^2 (a khác 0): Nếu a > 0 thì hàm số đồng biến khi x > 0 và nghịch biến khi x < 0. Nếu a < 0 thì hàm số đồng biến khi x < 0 và nghịch biến khi x > 0. Nếu a > 0 thì y > 0 với mọi x ≠ 0; y = 0 khi x = 0. Nếu a < 0 thì y < 0 với mọi x ≠ 0; y = 0 khi x = 0. Đồ thị của hàm số y = ax^2 (a khác 0): Đồ thị của hàm số y = ax^2 (a khác 0) là một parabol với đỉnh tại gốc tọa độ O. Vị trí của đồ thị so với trục hoành phụ thuộc vào giá trị của a. B. Bài tập áp dụng Tài liệu cung cấp nhiều bài tập áp dụng để bạn thực hành và mở rộng kiến thức: Tính giá trị của hàm số tại một điểm cho trước. Xét tính đồng biến, nghịch biến của hàm số. Vẽ đồ thị hàm số y = ax^2 (a khác 0). Giải bài toán liên quan đến sự tương giao giữa đồ thị và đường thẳng. Ngoài ra, tài liệu còn kèm theo một bộ bài tập về nhà để bạn tự rèn luyện và nắm vững kiến thức. Hãy cẩn thận và kiên nhẫn khi làm bài tập, sẽ không có gì là khó khăn nếu bạn cố gắng. Chúc bạn học tốt!
Tài liệu lớp 9 môn Toán chủ đề công thức nghiệm của phương trình bậc hai
Nội dung Tài liệu lớp 9 môn Toán chủ đề công thức nghiệm của phương trình bậc hai Bản PDF Tài liệu lớp 9 môn Toán với chủ đề công thức nghiệm của phương trình bậc hai cung cấp kiến thức cần nhớ, các dạng toán và bài tập chi tiết để học sinh hiểu rõ về phương trình bậc hai.I. Kiến thức cần nhớ:1. Phương trình bậc hai một ẩn:- Phương trình bậc hai một ẩn là phương trình có dạng \(ax^2 + bx + c = 0\).- Để giải phương trình bậc hai một ẩn, ta cần tìm tập nghiệm của phương trình đó.2. Công thức nghiệm của phương trình bậc hai:- Xét phương trình bậc hai \(ax^2 + bx + c = 0\) và biệt thức \(\Delta = b^2 - 4ac\).- Nếu \(\Delta < 0\), phương trình vô nghiệm.- Nếu \(\Delta = 0\), phương trình có nghiệm kép.- Nếu \(\Delta > 0\), phương trình có hai nghiệm phân biệt.3. Công thức nghiệm thu gọn của phương trình bậc hai:- Xét phương trình bậc hai \(ax^2 + bx + c = 0\) với \(b = \frac{b}{2}\).- Trong trường hợp \(\Delta < 0\), phương trình vô nghiệm.- Trong trường hợp \(\Delta = 0\), phương trình có nghiệm kép: \(x = \frac{-b}{2a}\).- Trong trường hợp \(\Delta > 0\), phương trình có hai nghiệm phân biệt: \(x = \frac{-b \pm \sqrt{\Delta}}{2a}\).II. Bài tập và các dạng toán:- Tài liệu cung cấp các dạng toán như: giải phương trình bậc hai một ẩn, sử dụng công thức nghiệm, xác định số nghiệm của phương trình, chứng minh phương trình có nghiệm, vô nghiệm.- Học sinh có thể tự ôn tập và làm bài tập về nhà để nắm vững kiến thức.Tài liệu lớp 9 môn Toán với chủ đề công thức nghiệm của phương trình bậc hai là nguồn tư liệu hữu ích giúp học sinh hiểu rõ về phương trình bậc hai và rèn luyện kỹ năng giải các dạng toán liên quan.
Tài liệu lớp 9 môn Toán chủ đề hệ thức Vi-ét và ứng dụng
Nội dung Tài liệu lớp 9 môn Toán chủ đề hệ thức Vi-ét và ứng dụng Bản PDF - Nội dung bài viết Tài liệu lớp 9 môn Toán chủ đề hệ thức Vi-ét và ứng dụngNội dung tài liệu: Tài liệu lớp 9 môn Toán chủ đề hệ thức Vi-ét và ứng dụng Tài liệu này bao gồm 36 trang, cung cấp kiến thức cần nhớ, các dạng toán và bài tập liên quan đến chủ đề hệ thức Vi-ét và ứng dụng trong chương trình môn Toán lớp 9. Tài liệu cung cấp đầy đủ đáp án và lời giải chi tiết cho các bài tập. Nội dung tài liệu: A. Lý thuyết: 1. Hệ thức Vi-ét 2. Ứng dụng của hệ thức Vi-ét B. Bài tập: Tài liệu cung cấp các dạng bài tập sau: - Dạng 1: Không giải phương trình, tính giá trị của biểu thức đối xứng giữa các nghiệm. - Dạng 2: Giải phương trình bằng phương pháp nhẩm nghiệm. - Dạng 3: Tìm hai số khi biết tổng và tích. - Dạng 4: Xét dấu các nghiệm của phương trình bậc hai. - Dạng 5: Xác định điều kiện của tham số để phương trình bậc hai có nghiệm thỏa mãn hệ thức cho trước. - Dạng 6: Tìm GTLN – GTNN của biểu thức. - Dạng 7: Tìm hệ thức giữa hai nghiệm của phương trình không phụ thuộc vào tham số. Bài tập về nhà: Tài liệu cung cấp file WORD (dành cho giáo viên) để học sinh có thể tự luyện tập thêm sau giờ học. Tóm lại, tài liệu lớp 9 môn Toán với chủ đề hệ thức Vi-ét và ứng dụng cung cấp kiến thức cần thiết, các dạng bài tập đa dạng và đáp án chi tiết, giúp học sinh nắm vững và rèn luyện kỹ năng giải bài tập hiệu quả.
Tài liệu lớp 9 môn Toán chủ đề phương trình quy về phương trình bậc hai
Nội dung Tài liệu lớp 9 môn Toán chủ đề phương trình quy về phương trình bậc hai Bản PDF Tài liệu lớp 9 môn Toán chủ đề phương trình bậc hai là tài liệu đầy đủ và chi tiết để học sinh tự học và ôn tập kiến thức về phương trình quy về phương trình bậc hai. Tài liệu gồm 27 trang, bao gồm các phần sau:A. Lý thuyết:1. Phương trình trùng phương: Đây là loại phương trình có dạng ax^2 + bx + c = 0. Để giải phương trình này, ta có thể đặt ẩn phụ t = x để đưa phương trình về dạng ax^2 + bx + c = 0.2. Phương trình chứa ẩn ở mẫu thức: Để giải phương trình này, ta cần tìm điều kiện xác định của ẩn và quy đồng mẫu thức hai vế rồi khử mẫu.3. Phương trình đưa về dạng tích: Để giải phương trình này, ta phân tích vế trái thành nhân tử và xét từng nhân tử bằng 0 để tìm nghiệm.B. Bài tập và các dạng toán:I. Phương trình không chứa tham số: Bao gồm nhiều dạng toán như giải phương trình trùng phương, phương trình chứa căn thức, và một số dạng khác.II. Phương trình chứa tham số: Bao gồm các dạng toán như phương trình bậc ba đưa được về dạng tích và phương trình trùng phương.Ngoài ra, tài liệu cũng cung cấp bài tập về nhà để học sinh ôn tập và làm thêm. Tài liệu được viết dễ hiểu, chi tiết và có đáp án cụ thể để học sinh tự kiểm tra và tự đánh giá. Đây là tài liệu hữu ích giúp học sinh nắm vững kiến thức về phương trình bậc hai và rèn luyện kỹ năng giải toán hiệu quả.