Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề HSG huyện lớp 8 môn Toán vòng 2 năm 2022 2023 phòng GD ĐT Lập Thạch Vĩnh Phúc

Nội dung Đề HSG huyện lớp 8 môn Toán vòng 2 năm 2022 2023 phòng GD ĐT Lập Thạch Vĩnh Phúc Bản PDF - Nội dung bài viết Đề Thi HSG Huyện Lớp 8 Môn Toán Vòng 2 Năm 2022 - 2023 Đề Thi HSG Huyện Lớp 8 Môn Toán Vòng 2 Năm 2022 - 2023 Xin chào quý thầy cô và các em học sinh lớp 8! Dưới đây là đề thi chọn học sinh giỏi cấp huyện môn Toán lớp 8 vòng 2 năm học 2022 - 2023 do Phòng Giáo dục và Đào tạo huyện Lập Thạch, tỉnh Vĩnh Phúc tổ chức. Đề thi có 10 bài toán tự luận, thời gian làm bài là 150 phút. Trích dẫn Đề HSG huyện Toán lớp 8 vòng 2 năm 2022 - 2023 phòng GD&ĐT Lập Thạch - Vĩnh Phúc: 1. Biết rằng đa thức \( f(x) \) khi chia cho \( x - 2 \) thì được số dư là 6067; khi chia cho \( x + 3 \) thì được số dư là -4043. Tìm đa thức dư khi chia đa thức \( f(x) \) cho đa thức \( x² + x - 6 \). 2. Cho hình vuông \( ABCD \) có cạnh bằng 8. Trên cạnh \( BC \), lấy điểm M sao cho \( BM = 5 \). Gọi N là giao điểm của đường thẳng \( CD \) và đường thẳng vuông góc với \( AM \) tại A. Gọi I là trung điểm của MN. Hãy tính độ dài đoạn thẳng DI. 3. Cho hình vuông \( ABCD \) có cạnh bằng a. Trên cạnh \( AD \) lấy điểm M sao cho \( AM = 3MD \). Kẻ tia \( BX \) cắt cạnh \( CD \) tại I sao cho \( ABM = MBI \). Kẻ tia phân giác của \( CBI \), tia này cắt cạnh \( CD \) tại N. a) Chứng minh rằng: \( MN = AM + NC \). b) Tính diện tích tam giác BMN theo a. Hy vọng đề thi sẽ giúp các em ôn tập và chuẩn bị tốt nhất cho kì thi sắp tới. Chúc các em thành công!

Nguồn: sytu.vn

Đọc Sách

Đề thi học sinh giỏi Toán 8 cấp tỉnh năm 2016 - 2017 sở GDĐT Lai Châu
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi học sinh giỏi Toán 8 cấp tỉnh năm 2016 – 2017 sở GD&ĐT Lai Châu; kỳ thi được diễn ra vào ngày 09 tháng 04 năm 2017. Trích dẫn đề thi học sinh giỏi Toán 8 cấp tỉnh năm 2016 – 2017 sở GD&ĐT Lai Châu : + Cho hình vuông EFGH. Từ E, vẽ góc vuông xEy sao cho cạnh Ex cắt các đường thẳng FG và GH theo thứ tự ở M và N, còn cạnh Ey cắt hai đường thẳng trên lần lượt ở P và Q. a) Chứng minh rằng các tam giác EMQ và ENP là các tam giác vuông cân; b) Đường thẳng QM cắt NP ở R. Gọi I và K theo thứ tự là trung điểm của PN và QM. Tứ giác EKRI là hình gì? Vì sao? c) Chứng minh bốn điểm F, H, K, I thẳng hàng. + Cho biểu thức a) Rút gọn A; b) Tìm giá trị nguyên của x để A có giá trị nguyên. + Cho ba số a, b, c thỏa mãn điều kiện abc = 2017. Tính giá trị của biểu thức: P = 2 22 2017 2017 2017 2017 1.
Đề thi HSG cấp huyện Toán 8 năm 2016 - 2017 phòng GDĐT Cẩm Xuyên - Hà Tĩnh
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi HSG cấp huyện Toán 8 năm 2016 – 2017 phòng GD&ĐT Cẩm Xuyên – Hà Tĩnh. Trích dẫn đề thi HSG cấp huyện Toán 8 năm 2016 – 2017 phòng GD&ĐT Cẩm Xuyên – Hà Tĩnh : + Cho hình vuông ABCD. Gọi I là một điểm nằm giữa A và B. Tia DI và tia CB cắt nhau ở K. Kẻ đường thẳng qua D vuông góc với DI. Đường thẳng này cắt đường thẳng BC tại Q. E là trung điểm của IQ, tia DE cắt BC tại F. Qua I vẽ đường thẳng song song với AD cắt DF tại H. Chứng minh rằng: a) Tứ giác IHQF là hình thoi. b) Tổng 1/DI2 + 1/DK2 không đổi khi I thay đổi trên cạnh AB. + Cho tam giác ABC vuông tại A có AB = 6cm và AC = 8cm. Gọi M là trung điểm của cạnh AB, N là trung điểm của cạnh AC. Tính độ dài đoạn thẳng MN. + Cho tam giác ABC vuông tại A, đường phân giác BD. Biết AD = 3 cm và DC = 5 cm. Tính độ dài AB và BC.
Đề thi học sinh giỏi Toán 8 năm 2016 - 2017 phòng GDĐT Gia Viễn - Ninh Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi học sinh giỏi Toán 8 năm 2016 – 2017 phòng GD&ĐT Gia Viễn – Ninh Bình. Trích dẫn đề thi học sinh giỏi Toán 8 năm 2016 – 2017 phòng GD&ĐT Gia Viễn – Ninh Bình : + Cho hình vuông ABCD. Qua A vẽ hai đưởng thẳng d và d’ vuông góc với nhau. Biết d cắt BC và CD lần lượt tại R và S, d’ cắt BC và CD ở P và Q. a) Chứng minh các tam giác AQR và tam giác APS là các tam giác cân. b) QR cắt PS tại H. Gọi M và N lật lượt là trung điểm của QR và PS. Chứng minh tứ giác AMHN là hình chữ nhật. c) Chứng minh MN là đường trung trực của AC. + Chứng minh rằng trong một hình thang cân, bình phương của đường chéo bằng bình phương của cạnh bên cộng với tích của hai đáy. + Tìm giá trị nhỏ nhất của biểu thức: M.
Đề thi HSG Toán 8 năm 2016 - 2017 phòng GDĐT Phù Ninh - Phú Thọ
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi HSG Toán 8 năm 2016 – 2017 phòng GD&ĐT Phù Ninh – Phú Thọ; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề thi HSG Toán 8 năm 2016 – 2017 phòng GD&ĐT Phù Ninh – Phú Thọ : + Cho hình vuông ABCD, M là một điểm nằm giữa B và C. Kẻ AN vuông góc với AM, AP vuông góc với MN (N và P thuộc đường thẳng CD). 1. Chứng minh tam giác AMN vuông cân và AN2 = NC.NP. 2. Tính tỉ số chu vi tam giác CMP và chu vi hình vuông ABCD. 3. Gọi Q là giao điểm của tia AM và tia DC. Chứng minh tổng 1/AM2 + 1AQ2 không đổi khi điểm M thay đổi trên cạnh BC. + Tỉ số các cạnh bé nhất của hai tam giác đồng dạng bằng 2/5. Tính chu vi P và P’ của hai tam giác đó biết P’ – P = 18 cm. + Cho tam giác ABC có độ dài ba cạnh: AB = 20 cm, AC = 34 cm, BC = 42 cm. Diện tích của tam giác đó là?