Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề HSG lớp 9 môn Toán cấp huyện năm 2023 2024 phòng GD ĐT Lập Thạch Vĩnh Phúc

Nội dung Đề HSG lớp 9 môn Toán cấp huyện năm 2023 2024 phòng GD ĐT Lập Thạch Vĩnh Phúc Bản PDF - Nội dung bài viết Đề HSG Toán lớp 9 cấp huyện năm 2023 - 2024 phòng GD&ĐT Lập Thạch Vĩnh Phúc Đề HSG Toán lớp 9 cấp huyện năm 2023 - 2024 phòng GD&ĐT Lập Thạch Vĩnh Phúc Xin chào quý thầy cô và các em học sinh lớp 9! Mình xin giới thiệu đến các bạn đề thi chọn học sinh giỏi môn Toán lớp 9 cấp huyện năm học 2023 - 2024 do phòng Giáo dục và Đào tạo huyện Lập Thạch, tỉnh Vĩnh Phúc tổ chức. Đề thi bao gồm nhiều câu hỏi thú vị và kh challenging, một trong số đó là câu hỏi về cửa hàng bác Tuấn ở thị trấn Xuân Hòa huyện Lập Thạch. Trong câu hỏi này, bạn sẽ phải suy luận để tìm ra giá bán mỗi thùng cá thính loại I dựa trên một số điều kiện và thông tin cụ thể về số lượng bán được trong tháng 9 vừa qua. Hãy cẩn thận và logic trong việc giải quyết bài toán này. Ngoài ra, đề thi còn đưa ra một bài toán phức tạp về tam giác ABC và các điểm P, M, N trên các cạnh của tam giác đó. Bạn sẽ phải chứng minh một phát biểu về diện tích của các tam giác này, đòi hỏi sự chính xác và cẩn thận trong việc suy luận. Và cuối cùng, bài toán về đa giác đều có 2023 đỉnh cũng là một thách thức đối với các bạn. Hãy tập trung để tính toán tổng của tất cả các tích ba số trên 3 đỉnh liên tiếp của đã giác trên, dựa trên điều kiện và yêu cầu cụ thể được đề thi đưa ra. Hy vọng rằng đề thi sẽ giúp các bạn rèn luyện và phát triển khả năng tư duy logic, sáng tạo và giải quyet vấn đề một cách hiệu quả. Chúc các em thành công và đạt kết quả cao trong kỳ thi sắp tới!

Nguồn: sytu.vn

Đọc Sách

Đề thi thử học sinh giỏi huyện Toán 9 năm 2022 - 2023 THCS Lăng Thành - Nghệ An
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi thử kỳ thi chọn học sinh giỏi cấp huyện môn Toán 9 năm học 2022 – 2023 trường THCS Lăng Thành, tỉnh Nghệ An. Trích dẫn đề thi thử học sinh giỏi huyện Toán 9 năm 2022 – 2023 THCS Lăng Thành – Nghệ An : + Tìm số tự nhiên n để A = 2n + 3n + 4n là một số chính phương. + Cho a, b là các số hữu tỉ thỏa mãn a + b và a.b đều là số nguyên. Chứng minh a và b đều là số nguyên. + Cho đường tròn (O) đường kính AB và điểm C nằm bên ngoài đường tròn sao cho CA và CB lần lượt cắt đường tròn (O) tại điểm thứ hai là D và E. AE cắt BD tại H và CH cắt AB tại F. Chứng minh: a) CED = CAB b) AD.AC = AF.AB c) HE HD HF.
Đề thi học sinh giỏi Toán 9 cấp tỉnh năm 2021 - 2022 sở GDĐT Gia Lai
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán 9 cấp tỉnh năm học 2021 – 2022 sở Giáo dục và Đào tạo tỉnh Gia Lai; kỳ thi được diễn ra vào Chủ Nhật ngày 17 tháng 04 năm 2022. Trích dẫn đề thi học sinh giỏi Toán 9 cấp tỉnh năm 2021 – 2022 sở GD&ĐT Gia Lai : + Cho một đa giác có 10 đỉnh như hình vẽ ở bên (bốn đỉnh: A, B, C, D hoặc B, C, D, E hoặc C, D, E, F hoặc … hoặc J, A, B, C được gọi là bốn đỉnh liên tiếp của đa giác). Các đỉnh của đa giác được đánh số một cách tùy ý bởi các số nguyên thuộc tập hợp M = {1; 2; 3; 4; 5; 6; 7; 8; 9; 10} (biết mỗi đỉnh chỉ được đánh bởi một số, các số được đánh ở các đỉnh là khác nhau). Chứng minh rằng ta luôn tìm được 4 đỉnh liên tiếp của đa giác được đánh số thuộc tập hợp M mà tổng các số đó lớn hơn 21. + Cho hình vuông ABCD nội tiếp đường tròn (O;R). Trên cung nhỏ AD lấy điểm E (E không trùng với A và D). Tia EB cắt các đường thẳng AD, AC lần lượt tại I và K. Tia EC cắt các đường thẳng DA, DB lần lượt tại M, N. a) Chứng minh rằng IAN = NBI. b) Khi điểm M ở vị trí trung điểm của AD. Hãy tính độ dài đoạn AE theo R. + Cho số p = n4 – 11n2 + 49 với n thuộc N. Hãy tìm các giá trị của n để p là số nguyên tố.