Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học kì 1 (HK1) lớp 10 môn Toán năm 2019 2020 trường THPT Nguyễn Huệ Thái Bình

Nội dung Đề thi học kì 1 (HK1) lớp 10 môn Toán năm 2019 2020 trường THPT Nguyễn Huệ Thái Bình Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh khối lớp 10 đề thi học kì 1 Toán lớp 10 năm 2019 – 2020 trường THPT Nguyễn Huệ – Thái Bình, đề thi có mã đề 209 gồm có 03 trang với 30 câu trắc nghiệm và 04 câu tự luận, thời gian làm bài 90 phút. Trích dẫn đề thi học kì 1 Toán lớp 10 năm 2019 – 2020 trường THPT Nguyễn Huệ – Thái Bình : + Cho tứ giác ABCD có AC và BD giao nhau tại O và một điểm S không thuộc mặt phẳng (ABCD). Trên đoạn SC lấy một điểm M không trùng với S và C. Giao điểm của đường thẳng SD với mặt phẳng (ABM) là? A. giao điểm của SD và BK (với K = SO ∩ AM). B. giao điểm của SD và AM. C. giao điểm của SD và MK (với K = SO ∩ AM). D. giao điểm của SD và AB. + Cho hình chóp S.ABCD có đáy là hình thang ABCD (AB // CD). Khẳng định nào sau đây sai? A. (SAB) ∩ (SAD) = đường trung bình của ABCD. B. (SAC) ∩ (SBD) = SO (O là giao điểm của AC và BD). C. (SAD) ∩ (SBC) = SI (I là giao điểm của AD và BC). D. Hình chóp S.ABCD có 4 mặt bên. [ads] + Trong các khẳng định sau, khẳng định nào đúng? A. Qua 3 điểm phân biệt bất kì có duy nhất một mặt phẳng. B. Qua 2 điểm phân biệt có duy nhất một mặt phẳng. C. Qua 3 điểm không thẳng hàng có duy nhất một mặt phẳng. D. Qua 4 điểm phân biệt bất kì có duy nhất một mặt phẳng. + Cho hình chóp S.ABCD có đáy ABCD là hình thang đáy lớn là AD = 2BC. a) Tìm giao tuyến của hai mặt phẳng (SAD) và (SBC). b) Gọi M, N và P lần lượt là trung điểm của AB, SA và SD. Thiết diện của mặt phẳng ( MNP) với hình chóp là hình gì? c) Chứng minh đường thẳng CP song song với mặt phẳng (SAB). + Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Tìm giao tuyến của hai mặt phẳng (SAB) và (SCD). A. là đường thẳng đi qua S song song với AD. B. là mặt phẳng SA. C. là điểm S. D. là đường thẳng đi qua S song song với AB, CD. File WORD (dành cho quý thầy, cô):

Nguồn: sytu.vn

Đọc Sách

Đề thi học kì 1 (HK1) lớp 10 môn Toán năm 2020 2021 trường THPT Nguyễn Công Trứ TP HCM
Nội dung Đề thi học kì 1 (HK1) lớp 10 môn Toán năm 2020 2021 trường THPT Nguyễn Công Trứ TP HCM Bản PDF Sáng thứ Bảy ngày 26 tháng 12 năm 2020, trường THPT Nguyễn Công Trứ, quận Gò Vấp, thành phố Hồ Chí Minh tổ chức kỳ thi kiểm tra chất lượng môn Toán lớp 10 giai đoạn cuối học kỳ 1 năm học 2020 – 2021. Đề thi HK1 Toán lớp 10 năm 2020 – 2021 trường THPT Nguyễn Công Trứ – TP HCM gồm 01 trang, đề được biên soạn theo dạng tự luận với 08 bài toán, thời gian làm bài 90 phút, đề thi có lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề thi HK1 Toán lớp 10 năm 2020 – 2021 trường THPT Nguyễn Công Trứ – TP HCM : + Để lập đường dây cao thế từ vị trí A đến vị trí B, ta phải tránh một ngọn núi nên ta phải nối thẳng đường dây từ vị trí A đến vị trí C dài 10 km rồi nối từ vị trí C thẳng đến vị trí B dài 8km. Biết góc tạo bởi hai đoạn dây AC và CB là 120 độ. Hỏi so với việc nối thẳng từ A đến B người ta tốn thêm bao nhiêu km dây? + Trong mặt phằng tọa độ Oxy, cho ba điểm A(-1;4), B(2;5), C(3;-8). a) Chứng minh tam giác ABC vuông tại A. Suy ra tâm đường tròn ngoại tiếp tam giác ABC. b) Tính diện tích tam giác ABC. c) Tìm điểm D thuộc Oy có tung độ nhỏ hơn 3 sao cho tam giác ABD cân tại A. + Tìm m để phương trình (x + 2)(x2 + 2x + m) = 0 có ba nghiệm âm phân biệt.
Đề thi học kì 1 (HK1) lớp 10 môn Toán năm 2020 2021 trường THPT Phan Ngọc Hiển Cà Mau
Nội dung Đề thi học kì 1 (HK1) lớp 10 môn Toán năm 2020 2021 trường THPT Phan Ngọc Hiển Cà Mau Bản PDF Đề thi HK1 Toán lớp 10 năm 2020 – 2021 trường THPT Phan Ngọc Hiển – Cà Mau mã đề 134 gồm có 02 trang, đề được biên soạn theo dạng trắc nghiệm kết hợp với tự luận, phần trắc nghiệm gồm 20 câu (4,0 điểm), phần tự luận gồm 05 câu (6,0 điểm), thời gian làm bài 90 phút, kỳ thi được tổ chức vào thứ Năm ngày 24 tháng 12 năm 2020, đề thi có đáp án mã đề 134, 215, 315, 418. Trích dẫn đề thi HK1 Toán lớp 10 năm 2020 – 2021 trường THPT Phan Ngọc Hiển – Cà Mau : + Trong các câu sau, câu nào không phải là mệnh đề? A. Bạn có thường đi du lịch vào kì nghỉ hè không? B. Hà Nội là thủ đô của Việt Nam. C. 2 là số nguyên tố chẵn. D. Một năm có 12 tháng. + Trong mặt phẳng Oxy, cho tam giác ABC với A(2;4); B(-3;2); C(5;1). a. Tìm toạ độ trọng tâm G của tam giác ABC. b. Tìm tọa độ điểm D sao cho ABCD là hình bình hành. + Cho tam giác ABC. Gọi M là một điểm trên cạnh BC sao cho MB = 4MC. Khi đó? File WORD (dành cho quý thầy, cô):
Đề thi học kì 1 (HK1) lớp 10 môn Toán (chuyên Toán) năm 2020 2021 trường chuyên Nguyễn Huệ Hà Nội
Nội dung Đề thi học kì 1 (HK1) lớp 10 môn Toán (chuyên Toán) năm 2020 2021 trường chuyên Nguyễn Huệ Hà Nội Bản PDF Đề thi HK1 Toán lớp 10 (chuyên Toán) năm 2020 – 2021 trường chuyên Nguyễn Huệ – Hà Nội gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 90 phút. Trích dẫn đề thi HK1 Toán lớp 10 (chuyên Toán) năm 2020 – 2021 trường chuyên Nguyễn Huệ – Hà Nội : + Cho tam giác ABC thỏa mãn: cos2A + cos2B + cos2C + 1 = 0. Chứng minh rằng tam giác ABC là tam giác vuông. + Cho p là một số nguyên tố lẻ. Chứng minh rằng A = 7^p – 5^p – 2 luôn là bội số của 6p. + Cho O, I lần lượt là tâm đường tròn ngoại tiếp và nội tiếp của tam giác ABC. Đường thẳng vuông góc với AI tại A cắt BI, CI tại K, M. Gọi B’, C’ lần lượt là giao điểm của BI với AC và CI với AB. Đường thẳng B’C’ cắt đường tròn (O) tại N, E. 1. Chứng minh rằng KM, NE, BC đồng quy. 2. Chứng minh rằng M, N, E, K đồng viên.
Đề thi học kì 1 (HK1) lớp 10 môn Toán chuyên năm 2020 2021 trường chuyên Lê Hồng Phong Nam Định
Nội dung Đề thi học kì 1 (HK1) lớp 10 môn Toán chuyên năm 2020 2021 trường chuyên Lê Hồng Phong Nam Định Bản PDF Đề thi HK1 Toán lớp 10 chuyên năm 2020 – 2021 trường chuyên Lê Hồng Phong – Nam Định gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 150 phút (không kể thời gian phát đề). Trích dẫn đề thi HK1 Toán lớp 10 chuyên năm 2020 – 2021 trường chuyên Lê Hồng Phong – Nam Định : + Cho tam giác nhọn, không cân ABC nội tiếp đường tròn (O), có các đường cao AH, BE, CF. Tiếp tuyến tại B và C của (O) cắt nhau tại T. Gọi D là giao điểm của AT và BC, S là giao điểm của EF và BC, G là hình chiếu vuông góc của T trên AO, J là giao điểm thứ hai của TH và đường tròn ngoại tiếp tam giác OBC. Chứng minh: a) Các điểm S, J, M, T cùng thuộc một đường tròn, với M là trung điểm của BC. b) Các đường thẳng SO, TH, DG đồng quy tại một điểm. + Tìm số dư khi chia 11^12 + 12^13 + 13^14 cho 7. + Cho p là số nguyên tố và a, b là các số nguyên dương lẻ thỏa mãn a – b chia hết cho p – 1 và a + b chia hết cho p. Chứng minh a^b + b^a chia hết cho p.