Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi Olympic lớp 8 môn Toán năm 2021 2022 trường THCS Tây Sơn Hà Nội

Nội dung Đề thi Olympic lớp 8 môn Toán năm 2021 2022 trường THCS Tây Sơn Hà Nội Bản PDF - Nội dung bài viết Giới Thiệu Đề Thi Olympic Toán Lớp 8 Trường THCS Tây Sơn, Hà Nội Giới Thiệu Đề Thi Olympic Toán Lớp 8 Trường THCS Tây Sơn, Hà Nội Xin chào quý thầy cô và các bạn học sinh lớp 8! Hôm nay, Sytu xin giới thiệu đến các bạn đề thi Olympic môn Toán lớp 8 năm học 2021 – 2022 của trường THCS Tây Sơn, quận Hai Bà Trưng, thành phố Hà Nội. Đề thi bao gồm những bài toán thú vị, khó khăn và yêu cầu sự tư duy logic, khéo léo. Dưới đây là một số câu hỏi mẫu trong đề thi: Câu 1: Trong tam giác ABC vuông tại A (AB < AC) và đường cao AH. Chứng minh rằng AC2 = BC.HC. Câu 2: Trong tam giác ABC vuông tại A, lấy điểm I thuộc AH. Kẻ đường thẳng đi qua B và vuông góc với CI tại K. Chứng minh rằng CH.CB = CI.CK. Câu 3: Tìm giá trị lớn nhất của biểu thức A = 8 – x4 + 2x2. Đây là một số câu hỏi đại diện cho độ khó và yêu cầu tư duy cao trong đề thi Olympic Toán lớp 8. Hy vọng các bạn học sinh sẽ rèn luyện, tự tin và đạt kết quả tốt trong kỳ thi sắp tới. Chúc các bạn thành công!

Nguồn: sytu.vn

Đọc Sách

Đề học sinh giỏi huyện Toán 8 năm 2013 - 2014 phòng GDĐT Nho Quan - Ninh Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề học sinh giỏi huyện Toán 8 năm 2013 – 2014 phòng GD&ĐT Nho Quan – Ninh Bình; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề học sinh giỏi huyện Toán 8 năm 2013 – 2014 phòng GD&ĐT Nho Quan – Ninh Bình : + Chứng minh rằng số có dạng 43 2 An n n n 6 11 6 chia hết cho 24 với mọi số tự nhiên n. + Đa thức f(x) khi chia cho x 1 dư 4, khi chia cho 2x 1 dư 2 3 x. Tìm phần dư khi chia f(x) cho 2 1 1 x x. + Cho hình vuông ABCD cạnh a, lấy điểm M bất kỳ trên cạnh BC (M khác B và C). Qua B kẻ đường thẳng vuông góc với đường thẳng DM tại H, kéo dài BH cắt đường thẳng DC tại K. 1. Chứng minh KM vuông góc với DB. 2. Chứng minh rằng: KC.KD = KH.KB. 3. Ký hiệu ABM DCM S S lần lượt là diện tích các tam giác ABM và DCM. a) Chứng minh tổng ABM DCM S S không đổi. b) Xác định vị trí của điểm M trên cạnh BC để 2 2 ABM DCM S S đạt giá trị nhỏ nhất. Tìm giá trị nhỏ nhất đó theo a.