Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

650 câu trắc nghiệm có lời giải chi tiết trong các đề thi THPTQG môn Toán

Nhằm giúp quý thầy, cô giáo cùng các em học sinh khối 12 có thêm tài liệu chất lượng để ôn tập chuẩn bị cho kỳ thi THPT Quốc gia môn Toán năm học 2019 – 2020, giới thiệu tài liệu 650 câu trắc nghiệm có lời giải chi tiết trong các đề thi THPTQG môn Toán. Tài liệu gồm 360 trang được biên soạn bởi thầy Tiêu Phước Thừa tuyển chọn 650 câu hỏi và bài toán trắc nghiệm có đáp án và lời giải chi tiết, từ các đề thi chính thức THPT Quốc gia môn Toán của Bộ Giáo dục và Đào tạo trong các năm 2017, 2018, 2019. Khái quát nội dung tài liệu tuyển tập các câu hỏi và bài tập trong đề thi THPT Quốc gia môn Toán: 1. Bài toán chỉ sử dụng P hoặc C hoặc A. 2. Bài toán kết hợp P, C và A. 3. Nhị thức newton. 4. Tính xác suất bằng định nghĩa. 5. Tính xác suất bằng công thức cộng. 6. Tính xác suất bằng công thức nhân. 7. Tính xác suất kết hợp công thức nhân và cộng. 8. Nhận diện cấp số cộng. 9. Tìm hạng tử cấp số cộng. 10. Giới hạn dãy số. 11. Giới hạn hàm số. 12. Bài toán tiếp tuyến. 13. Bài toán quãng đường vận tốc gia tốc. 14. Xét tính đơn điệu dựa vào công thức. 15. Xét tính đơn điệu dựa vào công thức. 16. Tìm điều kiện để hàm số đơn điệu. 17. Ứng dụng tính đơn điệu vào giải phương trình, hệ phương trình, bất phương trình. 18. Cực trị hàm số cho bởi công thức. 19. Tìm cực trị dựa vào bbt, đồ thị. 20. Tìm m để hàm số đạt cực trị tại một điểm x0 cho trước. 21. Tìm m để hàm số, đồ thị hàm số bậc ba có cực trị thỏa mãn điều kiện. 22. Tìm m để hàm số, đồ thị hàm số trùng phương có cực trị thỏa mãn điều kiện. 23. Tìm m để hàm số, đồ thị hàm số các hàm số khác có cực trị thỏa mãn điều kiện. 24. Giá trị nhỏ nhất, Giá trị lớn nhất của hàm số trên đoạn. 25. Giá trị nhỏ nhất, Giá trị lớn nhất của hàm số trên khoảng. 26. Ứng dụng Giá trị lớn nhất, Giá trị nhỏ nhất, toán thực tế. 27. Bài toán xác định các đường tiệm cận của hàm số (không chứa tham số) hoặc biết bảng biến thiên, đồ thị. 28. Bài toán xác định các đường tiệm cận của hàm số có chứa tham số. 29. Bài toán liên quan đến đồ thị hàm số và các đường tiệm cận. 30. Câu hỏi lý thuyết về tiệm cận. 33. Biện luận nghiệm phương trình. 34. Sự tương giao của hai đồ thị (liên quan đến tọa độ giao điểm). 35. Điểm đặc biệt của đồ thị hàm số. 36. Lũy thừa. 37. Tập xác định hàm số lũy thừa. 38. Tính giá trị biểu thức chứa lô-ga-rít. 39. Biến đổi, rút gọn, biểu diễn biểu thức chứa lô-ga-rít. 40. So sánh các biểu thức lô-ga-rít. 41. Tập xác định của hàm số mũ hàm số logarit. 42. Tính đạo hàm hàm số mũ, hàm số lô-ga-rít. 43. Khảo sát sự biến thiên và đồ thị của hàm số mũ, lô-ga-rít. 44. Tìm giá trị lớn nhất, nhỏ nhất của biểu thức chứa hàm mũ, hàm lô-ga-rít. 45. Bài toán thực tế về hàm số mũ, logarit. 46. Lý thuyết tổng hợp hàm số lũy thừa, mũ, lô-ga-rít. 47. Phương trình cơ bản. 48. Đưa về cùng cơ số. 49. Đặt ẩn phụ. 50. Dùng phương pháp hàm số đánh giá. [ads] 51. Toán thực tế. 52. Bất phương trình cơ bản. 53. Đưa về cùng cơ số. 54. Đặt ẩn phụ. 55. Toán thực tế. 56. Sử dụng định nghĩa – tính chất cơ bản. 57. Dùng phương pháp nguyên hàm từng phần. 58. Tích phân cơ bản. 59. Phương pháp đổi biến. 60. Phương pháp từng phần. 61. Hàm đặc biệt hàm ẩn. 62. Diện tích hình phẳng được giới hạn bởi các đồ thị. 63. Bài toán thực tế sử dụng diện tích hình phẳng. 64. Thể tích giới hạn bởi các đồ thị (tròn xoay). 65. Thể tích tính theo mặt cắt S(x). 66. Toán thực tế. 67. Xác định các yếu tố cơ bản của số phức. 68. Biểu diễn hình học cơ bản của số phức. 69. Thực hiện phép tính cộng, trừ, nhân số phức. 70. Xác định các yếu tố cơ bản của số phức qua các phép toán. 71. Bài toán quy về giải phương trình, hệ phương trình nghiệm thực. 72. Bài toán tập hợp điểm số phức. 73. Phép chia số phức. 74. Phương trình bậc hai với hệ số thực. 75. Phương trình quy về bậc hai. 76. Phương pháp hình học. 77. Phương pháp đại số. 78. Xác định góc giữa hai đường thẳng (dùng định nghĩa). 79. Xác định góc giữa mặt phẳng và đường thẳng. 80. Xác định góc giữa hai mặt phẳng. 81. Góc giữa 2 véctơ, 2 đường thẳng trong hình lăng trụ, hình lập phương. 82. Khoảng cách điểm đến đường mặt. 83. Khoảng cách giữa hai đường chéo nhau. 84. Xác định số đỉnh, cạnh, mặt bên của một khối đa diện. 85. Phân chia, lắp ghép các khối đa diện. 86. Phép biến hình trong không gian. 87. Diện tích xung quanh diện tích toàn phần. 88. Tính thể tích các khối đa diện. 89. Tỉ số thể tích. 90. Các bài toán khác (góc, khoảng cách …) liên quan đến thể tích khối đa diện. 91. Toán thực tế. 92. Cực trị. 93. Thể tích khối nón, khối trụ. 94. Diện tích xung quanh, toàn phần, độ dài đường sinh, chiều cao, bán kính. 95. Khối tròn xoay nội tiếp, ngoại tiếp khối đa diện. 96. Bài toán thực tế về khối nón, khối trụ. 97. Bài toán sử dụng định nghĩa, tính chất, vị trí tương đối. 98. Khối cầu ngoại tiếp khối đa diện. 99. Toán tổng hợp về mặt cầu. 100. Tìm tọa độ điểm, véc-tơ liên quan đến hệ trục Oxyz. 101. Tích vô hướng và ứng dụng. 102. Phương trình mặt cầu (xác định tâm, bán kính, viết phương trình mặt cầu đơn giản, vị trí tương đối, hai mặt cầu, điểm đến mặt cầu, đơn giản). 103. Các bài toán cực trị. 104. Tích có hướng và ứng dụng. 105. Xác định vectơ pháp tuyến. 106. Viết phương trình mặt phẳng. 107. Tìm tọa độ điểm liên quan đến mặt phẳng. 108. Các bài toán khoảng cách. 109. Các bài toán xét vị trí tương đối. 110. Các bài toán cực trị. 111. Xác định vec-tơ chỉ phương. 112. Viết phương trình đường thẳng. 113. Tìm tọa độ điểm liên quan đường thẳng. 114. Khoảng cách. 115. Vị trí tương đối. 116. Tổng hợp mặt phẳng đường thẳng mặt cầu. 117. Các bài toán cực trị. 118. Ứng dụng phương pháp tọa độ.

Nguồn: toanmath.com

Đọc Sách

Tuyển tập VD - VDC trong các đề thi thử THPT QG môn Toán - Trương Công Đạt
Tài liệu gồm 79 trang, được biên soạn bởi thầy giáo Trương Công Đạt, tuyển tập 420 câu vận dụng – vận dụng cao (VD – VDC) trong các đề thi thử tốt nghiệp THPT Quốc gia môn Toán, giúp học sinh lớp 12 rèn luyện để chuẩn bị cho kỳ thi tốt nghiệp THPT, kỳ thi xét tuyển vào Đại học – Cao đẳng. Mục lục : CHƯƠNG I. HÀM SỐ 2. A. CÂU HỎI 3. B. ĐÁP ÁN TRẮC NGHIỆM 37. CHƯƠNG II. NGUYÊN HÀM – TÍCH PHÂN 38. A. CÂU HỎI 39. B. ĐÁP ÁN TRẮC NGHIỆM 53. CHƯƠNG III. HÌNH HỌC KHÔNG GIAN 54. A. CÂU HỎI 55. B. ĐÁP ÁN TRẮC NGHIỆM 68. CHƯƠNG IV. SỐ PHỨC 69. A. CÂU HỎI 70. B. ĐÁP ÁN TRẮC NGHIỆM 79.
Tuyển chọn 200 bài toán VD - VDC từ các đề thi thử tốt nghiệp THPT môn Toán
Tài liệu gồm 174 trang, được biên soạn bởi tác giả Trương Công Đạt, tuyển chọn 200 bài toán mức độ vận dụng – vận dụng cao (viết tắt: VD – VDC) từ các đề thi thử tốt nghiệp THPT môn Toán của các trường và sở GD&ĐT trên toàn quốc, có đáp án và lời giải chi tiết; lời giải các bài toán được trình bày theo nhiều cách: phương pháp tự luận, phương pháp giải nhanh trắc nghiệm, phương pháp sử dụng máy tính cầm tay Casio / Vinacal. Trích dẫn tài liệu tuyển chọn 200 bài toán VD – VDC từ các đề thi thử tốt nghiệp THPT môn Toán: + Cho hàm số f(x) là hàm đa thức bậc 3 và có đồ thị như hình vẽ. Xét hàm số g(x) = f(2×3 + x − 1) + m. Với giá trị nào của m thì giá trị nhỏ nhất của g(x) trên đoạn [0;1] bằng 2022? + Trong không gian cho hai điểm I (2;3;3) và J (4;−1;1). Xét khối trụ (T) có hai đường tròn đáy nằm trên mặt cầu đường kính IJ và có hai tâm nằm trên đường thẳng IJ. Khi có thể tích (T) lớn nhất thì hai mặt phẳng chứa hai đường tròn đáy của (T) có phương trình dạng x + by + cz + d1 = 0 và x + by + cz + d2 = 0. Giá trị của d21 + d22 bằng? + Trên tập hợp các số phức, xét phương trình z2 − 2z − m + 2 = 0 (m là tham số thực). Gọi T là tập hợp các giá trị của m để phương trình trên có hai nghiệm phân biệt được biểu diễn hình học bởi hai điểm A và B trên mặt phẳng tọa độ sao cho diện tích tam giác ABC bằng 2√2 với C(−1;1). Tổng các phần tử trong T bằng?
Toàn cảnh đề thi tốt nghiệp THPT môn Toán (2017 - 2022)
Tài liệu gồm 574 trang, được tổng hợp bởi thầy giáo Th.S Nguyễn Hoàng Việt, tổng hợp và phân loại theo chuyên đề các dạng toán trong các đề thi tốt nghiệp THPT môn Toán của Bộ Giáo dục và Đào tạo từ năm học 2016 – 2017 đến năm học 2021 – 2022, có đáp án và lời giải chi tiết; tài liệu giúp học sinh tham khảo trong quá trình ôn tập chuẩn bị cho kỳ thi tốt nghiệp Trung học Phổ thông môn Toán. MỤC LỤC : I GIẢI TÍCH 1. Chương 1. ỨNG DỤNG ĐẠO HÀM ĐỂ KHẢO SÁT VÀ VẼ ĐỒ THỊ CỦA HÀM SỐ 2. §1 – Sự đồng biến và nghịch biến của hàm số 2. §2 – Cực trị của hàm số 31. §3 – Giá trị lớn nhất và giá trị nhỏ nhất của hàm số 77. §4 – Đường tiệm cận 96. §5 – Khảo sát sự biến thiên và vẽ đồ thị hàm số 109. Chương 2. HÀM SỐ LŨY THỪA. HÀM SỐ MŨ VÀ HÀM SỐ LÔGARIT 177. §1 – Lũy thừa 177. §2 – Hàm số lũy thừa 179. §3 – Lôgarit 183. §4 – Hàm số mũ. Hàm số Lôgarit 202. §5 – Phương trình mũ. Phương trình Lôgarit 224. §6 – Bất phương trình mũ và lôgarit 264. Chương 3. NGUYÊN HÀM. TÍCH PHÂN VÀ ỨNG DỤNG 282. §1 – Nguyên hàm 282. §2 – Tích phân 305. §3 – Ứng dụng của tích phân trong hình học 308. Chương 4. SỐ PHỨC 348. §1 – Số phức 348. §2 – Cộng, trừ và nhân số phức 365. §3 – Phép chia số phức 381. §4 – Phương trình bậc hai với hệ số thực 385. II HÌNH HỌC 386. Chương 1. KHỐI ĐA DIỆN 387. §1 – Khái niệm về khối đa diện 387. §2 – Khối đa diện lồi và khối đa diện đều 389. §3 – Khái niệm về thể tích của khối đa diện 390. Chương 2. MẶT NÓN. MẶT TRỤ. MẶT CẦU 437. §1 – Khái niệm về mặt tròn xoay 437. §2 – Mặt cầu 466. Chương 3. PHƯƠNG PHÁP TỌA ĐỘ TRONG KHÔNG GIAN 480. §1 – Hệ tọa độ trong không gian 480. §2 – Phương trình mặt phẳng 502. §3 – Phương trình đường thẳng trong không gian 530.
Phát triển các câu VD - VDC đề tham khảo thi TN THPT 2022 môn Toán
Tài liệu gồm 488 trang, được biên soạn bởi thầy giáo Đặng Việt Đông (giáo viên Toán trường THPT Nho Quan A, tỉnh Ninh Bình), phát triển các câu vận dụng & vận dụng cao trong đề tham khảo kỳ thi tốt nghiệp THPT năm 2022 môn Toán của Bộ Giáo dục và Đào tạo. Tài liệu có đáp án và lời giải chi tiết, chia phần bài tập và lời giải riêng, phù hợp với đối tượng học sinh khá – giỏi, muốn chinh phục mức điểm 9 – 10 trong kỳ thi tốt nghiệp THPT 2022 môn Toán.