Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh môn Toán (chuyên) năm 2022 2023 sở GD ĐT Tây Ninh

Nội dung Đề tuyển sinh môn Toán (chuyên) năm 2022 2023 sở GD ĐT Tây Ninh Bản PDF - Nội dung bài viết Đề tuyển sinh môn Toán (chuyên) năm 2022-2023 sở GD ĐT Tây Ninh Đề tuyển sinh môn Toán (chuyên) năm 2022-2023 sở GD ĐT Tây Ninh Sytu xin gửi đến quý thầy cô và các em học sinh lớp 9 đề thi chính thức cho kỳ thi tuyển sinh vào lớp 10 THPT môn Toán (chuyên) năm học 2022-2023 của sở Giáo dục và Đào tạo tỉnh Tây Ninh. Kỳ thi sẽ diễn ra vào ngày thứ Tư, 08 tháng 06 năm 2022. Đề thi bao gồm đáp án và lời giải chi tiết. Dưới đây là một số câu hỏi từ đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2022-2023 của sở GD&ĐT Tây Ninh: 1. Cho tam giác điều ABC có cạnh a, đường cao AH (H thuộc BC), M là điểm bất kỳ trên cạnh BC. Vẽ ME vuông góc AB tại E và MF vuông góc AC tại F. Gọi O là trung điểm của AM. Hỏi tứ giác OEHF là hình gì? Tìm diện tích nhỏ nhất của tứ giác OEHF khi M di chuyển trên cạnh BC. 2. Đường tròn (O) có đường kính BC, A là điểm nằm trên (O) (AB < AC và A khác B). Đường tròn ngoại tiếp tam giác ABO cắt đoạn thẳng AC tại điểm thứ hai là K. Đường thẳng BK cắt (O) tại điểm thứ hai là L. Cát đường thẳng CL, OK cắt nhau tại I. Hãy chứng minh ba điểm A, B, I thẳng hàng. 3. Cho đường thẳng 28dy =x-3 và parabol y = (x-1)^2. Hãy tìm tọa độ giao điểm của đường thẳng và parabol.

Nguồn: sytu.vn

Đọc Sách

Đề tuyển sinh vào 10 môn Toán chuyên năm 2020 - 2021 sở GDĐT Đồng Tháp
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi tuyển sinh vào lớp 10 môn Toán chuyên năm học 2020 – 2021 sở Giáo dục và Đào tạo tỉnh Đồng Tháp; kỳ thi được diễn ra vào ngày 24 tháng 07 năm 2020; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm.
Đề tuyển sinh vào 10 môn Toán cơ sở năm 2020 - 2021 sở GDĐT Đồng Tháp
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi tuyển sinh vào lớp 10 môn Toán cơ sở năm học 2020 – 2021 sở Giáo dục và Đào tạo tỉnh Đồng Tháp; kỳ thi được diễn ra vào ngày 23 tháng 07 năm 2020; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm.
Đề tuyển sinh lớp 10 THPT môn Toán năm 2020 - 2021 sở GDĐT Thanh Hóa
Thứ Sáu ngày 17 tháng 07 năm 2020, sở Giáo dục và Đào tạo tỉnh Thanh Hóa tổ chức kỳ thi tuyển sinh vào lớp 10 khối THPT môn Toán năm học 2020 – 2021. Đề tuyển sinh lớp 10 THPT môn Toán năm 2020 – 2021 sở GD&ĐT Thanh Hóa gồm có 01 trang với 05 bài toán dạng tự luận, thời gian làm bài thi là 120 phút (không tính thời gian phát đề). Trích dẫn đề tuyển sinh lớp 10 THPT môn Toán năm 2020 – 2021 sở GD&ĐT Thanh Hóa : + Trong mặt phẳng tọa độ Oxy, cho đường thẳng (d) có phương trình y = ax + b. Tìm a, b để đường thẳng (d) cắt trục tung tại điểm có tung độ bằng 2 và đi qua điểm M(2;3). [ads] + Cho tam giác nhọn ABC nội tiếp đường tròn (O). Các đường cao BD, CE (D thuộc AC, E thuộc AB) của tam giác kéo dài lần lượt cắt đường tròn (O) tại các điểm M và N (M khác B, N khác C). 1. Chứng minh tứ giác BCDE nội tiếp được trong một đường tròn. 2. Chứng minh MN song song với DE. 3. Khi đường tròn (O) và dây BC cố định, điểm A di động trên cùng lớn BC sao cho tam giác ABC nhọn, chứng minh bán kính đường tròn ngoại tiếp tam giác ADE không đổi và tìm vị trí của điểm A để diện tích tam giác ADE đạt giá trị lớn nhất. + Cho ba số thực dương x, y, z thỏa mãn điều kiện x + y + z = xyz. Tìm giá trị nhỏ nhất của biểu thức: Q = (y + 2)/x^2 + (z + 2)/y^2 + (x + 2)/z^2.
Đề tuyển sinh lớp 10 THPT môn Toán năm 2020 - 2021 sở GDĐT Quảng Ninh
Sáng thứ Sáu ngày 17 tháng 07 năm 2020, sở Giáo dục và Đào tạo tỉnh Quảng Ninh tổ chức kỳ thi tuyển sinh vào lớp 10 khối THPT môn Toán năm học 2020 – 2021. Đề tuyển sinh lớp 10 THPT môn Toán năm 2020 – 2021 sở GD&ĐT Quảng Ninh gồm có 01 trang với 05 bài toán dạng tự luận, thời gian làm bài thi là 120 phút (không tính thời gian phát đề). Trích dẫn đề tuyển sinh lớp 10 THPT môn Toán năm 2020 – 2021 sở GD&ĐT Quảng Ninh : + Cho phương trình x^2 + 4x + 3m – 2 = 0, với m là tham số. 1. Giải phương trình với m = -1. 2. Tìm giá trị của m để phương trình đã cho có một nghiệm x = 2. 3. Tìm các giá trị của m để phương trình đã cho có hai nghiệm phân biệt x1 và x2 sao cho x1 + 2×2 = 1. + Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình: Khoảng cách giữa hai bến sông A và B là 32 km. Một canô xuôi dòng từ bến A đến bến B rồi lập tức quay về bến A. Kể từ lúc khởi hành đến lúc về tới bến A hết tất cả 6 giờ. Tính vận tốc của cano khi nước yên lặng, biết vận tốc của dòng nước là 4 km/h. [ads] + Cho đường tròn (O;R) và A là một điểm nằm bên ngoài đường tròn. Từ điểm A kẻ hai tiếp tuyến AB và AC với đường tròn (O) (B và C là hai tiếp điểm). Gọi H là giao điểm của AO và BC. Kẻ đường kính BD của đường tròn (O). AD cắt đường tròn tại điểm thứ hai là E. a. Chứng minh ABOC là tứ giác nội tiếp. b. Tính độ dài AH, biết R = 3cm, AB = 4cm. c. Chứng minh AE.AD = AH.AO. d. Tia CE cắt AH tại F. Chứng tỏ F là trung điểm của AH.