Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát vào lớp 10 môn Toán năm 2020 - 2021 phòng GDĐT Gia Lâm - Hà Nội

Thứ Năm ngày 25 tháng 06 năm 2020, phòng Giáo dục và Đào tạo huyện Gia Lâm, thành phố Hà Nội tổ chức kỳ thi khảo sát chất lượng môn Toán ôn thi tuyển sinh vào lớp 10 năm học 2020 – 2021. Đề khảo sát vào lớp 10 môn Toán năm 2020 – 2021 phòng GD&ĐT Gia Lâm – Hà Nội gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài thi là 90 phút, cấu trúc đề bám sát đề tuyển sinh lớp 10 môn Toán của sở Giáo dục và Đào tạo thành phố Hà Nội những năm gần đây. Trích dẫn đề khảo sát vào lớp 10 môn Toán năm 2020 – 2021 phòng GD&ĐT Gia Lâm – Hà Nội : + Một tàu tuần tra chạy ngược dòng 60 km, sau đó chạy xuôi dòng 48km trên cùng một dòng sông có vận tốc của dòng nước là 2km/h. Tính vận tốc của tàu tuần tra khi nước yên lặng, biết thời gian xuôi dòng ít hơn thời gian ngược dòng là 60 phút. + Một bồn nước inox dạng hình trụ có chiều cao 1,8m và diện tích đáy là 1,25m2. Hỏi bồn nước này đựng đầy được bao nhiêu mét khối nước? (bỏ qua bề dày của bồn nước). [ads] + Cho đường tròn tâm O bán kính R, kẻ đường kính AB. Gọi d là tiếp tuyến của (O) tại A. Lấy C là một điểm bất kì trên d (điểm C khác điểm A). Từ C kẻ tiếp tuyến thứ hai CM với (O) (M là tiếp điểm). Kẻ MH vuông góc với AB tại H. Gọi E là giao điểm của CO và MA, gọi K là giao điểm của CB và MH. 1) Chứng minh tứ giác AOMC nội tiếp. 2) Chứng minh EA.MH = EO.HA. 3) Kéo dài BM cắt d tại N. Chứng minh C là trung điểm của AN và KE // AB. 4) Qua O vẽ đường thẳng vuông góc với OC, đường thẳng này cắt các tia CA và CM theo thứ tự tại P và Q. Xác định vị trí của C để diện tích tam giác CPQ nhỏ nhất.

Nguồn: toanmath.com

Đọc Sách

Đề tuyển sinh lớp 10 chuyên môn Toán năm 2021 - 2022 sở GDĐT Quảng Trị
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề tuyển sinh lớp 10 chuyên môn Toán năm 2021 – 2022 sở GD&ĐT Quảng Trị; kỳ thi được diễn ra vào sáng thứ Sáu ngày 04 tháng 06 năm 2021. Trích dẫn đề tuyển sinh lớp 10 chuyên môn Toán năm 2021 – 2022 sở GD&ĐT Quảng Trị : + Điểm số trung bình của một vận động viên bắn súng sau 40 lần bắn là 8,25 điểm. Kết quả cụ thể được ghi trong bảng sau, trong đó có hai ô bị mờ không đọc được đánh dấu *. Điểm số của mỗi lần bắn. Số lần bắn. Hãy tìm lại các số trong hai ô đó. + Cho tam giác ABC vuông tại A. Trên cạnh AC lấy điểm F, vẽ FE vuông góc với BC tại E. Gọi (O) là đường tròn ngoại tiếp tam giác CEF. Đường thẳng BF cắt (O) tại điểm thứ hai là D, DE cắt AC tại H. 1. Chứng minh ABEF là tứ giác nội tiếp. 2. Chứng minh BCA = BDA. 3. Chứng minh hai tam giác AEO và EHO đồng dạng. 4. Đường thẳng AD cắt (O) tại điểm thứ hai là G, FG cắt CD tại I, CG cắt FD tại K. Chứng minh I, K, H thẳng hàng. + Cho các số thực x, y, z thỏa mãn 0 < x, y, z < 1. Chứng minh rằng?
Đề Toán (chung) thi vào 10 năm 2021 - 2022 trường chuyên Lê Quý Đôn - BR VT
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề Toán (chung) thi vào 10 năm 2021 – 2022 trường chuyên Lê Quý Đôn – BR VT; kỳ thi được diễn ra vào sáng thứ Sáu ngày 04 tháng 06 năm 2021. Trích dẫn đề Toán (chung) thi vào 10 năm 2021 – 2022 trường chuyên Lê Quý Đôn – BR VT : + Theo kế hoạch, một đội xe phải chở 150 tấn hàng từ một khu công nghiệp thuộc huyện Châu Đức đến cảng Cái Mép – Thị Vải. Khi thực hiện thì trong đội có 5 xe phải đi làm việc khác, nên mỗi xe còn lại của đội phải chở thêm 5 tấn hàng. Tính số xe lúc đầu của đội (biết khối lượng hàng trên mỗi xe chở là như nhau). + Cho đường tròn (O) và điểm A nằm bên ngoài đường tròn. Kẻ các tiếp tuyến AB, AC của đường tròn (O) ( B, C là các tiếp điểm). Một đường thẳng đi qua A cắt đường tròn (O) tại hai điểm phân biệt D, K (D nằm giữa A, K và B, D nằm cùng phía đối với đường thẳng OA). Gọi H là giao điểm của AO và BC. a) Chứng minh ABOC là tứ giác nội tiếp. b) Chứng minh AD.AK = AB2 và CD.AK + OH OA = OA2. c) Chứng minh OAD = ODH. d) Đường thẳng qua D và vuông góc với OB cắt BC tại M. Gọi P là trung điểm của AB. Chứng minh ba điểm K, M, P thẳng hàng. + Với x, y là các số thực đương, tìm giá trị lớn nhất của biểu thức S.
Đề tuyển sinh lớp 10 môn Toán năm 2021 - 2022 sở GDĐT Khánh Hòa
Thứ Năm ngày 03 tháng 06 năm 2021, sở Giáo dục và Đào tạo tỉnh Khánh Hòa tổ chức kỳ thi tuyển sinh vào lớp 10 Trung học Phổ thông môn Toán năm học 2021 – 2022. Đề tuyển sinh lớp 10 môn Toán năm 2021 – 2022 sở GD&ĐT Khánh Hòa gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài thi là 120 phút, đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề tuyển sinh lớp 10 môn Toán năm 2021 – 2022 sở GD&ĐT Khánh Hòa : + Theo kế hoạch, Công an tỉnh Khánh Hòa sẽ cấp 7200 thẻ Căn cước công dân cho địa phương A. Một tổ công tác được điều động đến địa phương A để cấp thẻ Căn cước công dân trong một thời gian nhất định. Khi thực hiện nhiệm vụ, tổ công tác đã cải tiến kĩ thuật nên mỗi ngày đã cấp tăng thêm được 40 thẻ Căn cước so với kế hoạch. Vì vậy, tổ công tác đã hoàn thành nhiệm vụ sớm hơn kế hoạch 2 ngày. Hỏi theo kế hoạch ban đầu, mỗi ngày tổ công tác sẽ cấp được bao nhiêu thẻ Căn cước? + Cho tam giác ABC có ba góc nhọn, nội tiếp trong đường tròn O R và hai đường cao BE CF cắt nhau tại H. a) Chứng minh BCEF là tứ giác nội tiếp đường tròn. b) Chưng minh OA EF. c) Hai đường thẳng BE, CF lần lượt cắt đường tròn (O) tại điểm thứ hai là N và P. Đường thẳng AH cắt đường tròn (O) tại điểm thứ hai là M và cắt BC tại D. Tính giá trị biểu thức AM BN CP AD BE CF. + Trên mặt phẳng tọa độ, cho parabol 2 P y x và đường thẳng 2 2 2 d y x m m (m là tham số). a) Biết A là một điểm thuộc P và có hoành độ 2 A x. Xác định tọa độ điểm A. b) Tìm tất cả các giá trị của m để d cắt P tại hai điểm phân biệt. c) Xác định tất cả các giá trị của m để d cắt P tại hai điểm phân biệt có hoành độ lần lượt là 1 x và 2 x thỏa mãn điều kiện 2 1 2 x x m 2 3.
Đề tuyển sinh lớp 10 môn Toán năm 2021 - 2022 sở GDĐT Thanh Hóa
Thứ Sáu ngày 04 tháng 06 năm 2021, sở Giáo dục và Đào tạo tỉnh Thanh Hóa tổ chức kỳ thi tuyển sinh vào lớp 10 Trung học Phổ thông môn Toán năm học 2021 – 2022. Đề tuyển sinh lớp 10 môn Toán năm 2021 – 2022 sở GD&ĐT Thanh Hóa gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài thi là 120 phút. Trích dẫn đề tuyển sinh lớp 10 môn Toán năm 2021 – 2022 sở GD&ĐT Thanh Hóa : + Trong mặt phẳng tọa độ Oxy, cho đường thẳng (d) có phương trình y = (2m + 1)x + m (m là tham số). Tìm m để đường thẳng (d) đi qua điểm A(1;5). + Cho phương trình x2 – 2x + m – 1 = 0 (m là tham số). Tìm các giá trị của m để phương trình có hai nghiệm x1, x2 thỏa mãn hệ thức x1^4 – x1^3 = x2^4 – x2^3. + Cho tam giác nhọn ABC nội tiếp đường tròn (O). Các đường cao AD, BE, CF (D thuộc BC, E thuộc AC, F thuộc AB) của tam giác cắt nhau tại H, M là trung điểm của cạnh BC. 1. Chứng minh AEHF là tứ giác nội tiếp. 2. Chứng minh các đường thẳng ME và MF là các tiếp tuyến của đường tròn ngoại tiếp tứ giác AEHF. 3. Chứng minh DE + DF =< BC.