Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề kiểm tra chất lượng lớp 12 môn Toán đầu năm 2022 2023 THPT Hàn Thuyên Bắc Ninh

Nội dung Đề kiểm tra chất lượng lớp 12 môn Toán đầu năm 2022 2023 THPT Hàn Thuyên Bắc Ninh Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề kiểm tra chất lượng môn Toán lớp 12 đầu năm học 2022 – 2023 trường THPT Hàn Thuyên, tỉnh Bắc Ninh; đề thi mã đề 132 gồm 05 trang với 50 câu trắc nghiệm, thời gian làm bài 90 phút, nội dung đề nằm trong chương trình Toán lớp 10 và Toán lớp 11; đề thi có đáp án mã đề 132 209 357 485 570 628 743 896. Trích dẫn đề kiểm tra chất lượng Toán lớp 12 đầu năm 2022 – 2023 THPT Hàn Thuyên – Bắc Ninh : + Tại vòng chung kết của một trò chơi trên truyền hình, có 100 khán giả tại trường quay có quyền bình chọn cho hai thí sinh A và B. Biết rằng có 85 khán giả bình chọn cho thí sinh A, 72 khán giả bình chọn cho thí sinh B và 60 khán giả bình chọn cho cả hai thí sinh này. Có bao nhiêu khán giả tham gia bình chọn? + Trong dịp hội trại hè 2022, bạn An thả một quả bóng cao su từ độ cao 6 m so với mặt đất, mỗi lần chạm đất quả bóng lại nảy lên một độ cao bằng ba phần tư độ cao lần rơi trước. Biết rằng quả bóng luôn chuyển động vuông góc với mặt đất. Tổng quãng đường quả bóng đã bay (từ lúc thả bóng cho đến lúc bóng không nảy nữa) khoảng? + Trong mặt phẳng với hệ toạ độ Oxy cho tam giác ABC có phương trình đường thẳng chứa cạnh BC là x y 2 4 0. Gọi D E 2 2 1 4 lần lượt là hình chiếu vuông góc của B lên AC AI với I là tâm đường tròn ngoại tiếp tam giác ABC. Giả sử toạ độ điểm B là B a b tính 2 3 a b biết đỉnh B có hoành độ âm.

Nguồn: sytu.vn

Đọc Sách

Đề khảo sát Toán 12 lần 2 năm 2020 - 2021 trường Thuận Thành 1 - Bắc Ninh
Đề khảo sát Toán 12 lần 2 năm 2020 – 2021 trường Thuận Thành 1 – Bắc Ninh gồm 07 trang với 50 câu hỏi và bài toán dạng trắc nghiệm, thời gian làm bài 90 phút, kỳ thi nhằm kiểm tra kiến thức thường xuyên, mục tiêu hướng đến kỳ thi tốt nghiệp Trung học Phổ thông môn Toán năm học 2020 – 2021. Trích dẫn đề khảo sát Toán 12 lần 2 năm 2020 – 2021 trường Thuận Thành 1 – Bắc Ninh : + Một sinh viên muốn mua một cái laptop có giá 12,5 triệu đồng nên mỗi tháng gửi tiết kiệm vào ngân hàng 750.000 đồng theo hình thức lãi suất kép với lãi suất 0,72% một tháng. Hỏi sau ít nhất bao nhiêu tháng sinh viên đó có thể dùng số tiền gửi tiết kiệm để mua được laptop? + Cho khối chóp S.ABC có thể tích V. Điểm M nằm trên cạnh SB. Thiết diện qua M song song với SA và BC chia khối chóp S.ABC thành hai phần. Gọi V1 là thể tích phần khối chóp S.ABC chứa cạnh SA. Biết V1/V = 20/7. Tỉ số SM/SB bằng? + Cho một hình nón đỉnh S có độ dài đường sinh bằng 10cm, bán kính đáy bằng 6cm. Cắt hình nón đã cho bởi một mặt phẳng song song với mặt phẳng chứa đáy được một hình nón (N) đỉnh S có chiều cao bằng 16/5cm. Tính diện tích xung quay của khối nón (N).
Đề khảo sát chất lượng lần 2 Toán 12 năm 2020 - 2021 trường Quế Võ 1 - Bắc Ninh
Ngày … tháng 01 năm 2021, trường THPT Quế Võ 1, tỉnh Bắc Ninh tổ chức kỳ thi khảo sát chất lượng (KSCL) môn Toán lớp 12 năm học 2020 – 2021 lần thứ hai. Đề khảo sát chất lượng lần 2 Toán 12 năm 2020 – 2021 trường Quế Võ 1 – Bắc Ninh được biên soạn theo hình thức trắc nghiệm, đề gồm 06 trang với 50 câu hỏi và bài toán, thời gian làm bài 90 phút, đề thi có đáp án mã đề 101, 239, 353, 477, 593, 615, 737, 859, 971, 193, 275, 397. Trích dẫn đề khảo sát chất lượng lần 2 Toán 12 năm 2020 – 2021 trường Quế Võ 1 – Bắc Ninh : + Trong Lễ tổng kết Tháng thanh niên, có 10 đoàn viên xuất sắc gồm 5 nam và 5 nữ được tuyên dương khen thưởng. Các đoàn viên này được sắp xếp ngẫu nhiên thành một hàng ngang trên sân khấu để nhận giấy khen. Tính xác suất để trong hàng ngang trên không có bất kì 2 bạn nữ nào đứng cạnh nhau. + Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật tâm I, cạnh bên SA vuông góc với đáy. Điểm cách đều các đỉnh của hình chóp là: A. trung điểm SD. B. trung điểm SB. C. Điểm nằm trên đường thẳng d // SA và không thuộc SC. D. trung điểm SC. + Cho tam giác ABC có BC = a, CA = b, AB = c. Nếu a, b, c theo thứ tự lập thành một cấp số nhân thì: A. lnsin A.lnsin C = 2lnsin B. B. lnsin A + lnsin C = 2lnsin B. C. ln sin A.ln sin C = (ln sin B)^2. D. lnsin A + lnsin C = ln (2sin B).
Đề thi KSCL Toán 12 lần 1 năm 2020 - 2021 trường THPT Liễn Sơn - Vĩnh Phúc
Đề thi KSCL Toán 12 lần 1 năm học 2020 – 2021 trường THPT Liễn Sơn – Vĩnh Phúc mã đề 101 gồm 06 trang với 50 câu trắc nghiệm, thời gian làm bài 90 phút (không kể thời gian giáo viên coi thi phát đề), đề thi có đáp án. Trích dẫn đề thi KSCL Toán 12 lần 1 năm 2020 – 2021 trường THPT Liễn Sơn – Vĩnh Phúc : + Một cửa hàng bán bưởi Đoan Hùng của Phú Thọ với giá bán mỗi quả là 50.000 đồng. Với giá bán này thì của hàng chỉ bán được khoảng 40 quả bưởi. Cửa hàng này dự định giảm giá bán, ước tính nếu cửa hàng cứ giảm mỗi quả 5000 đồng thì số bưởi bán được tăng thêm là 50 quả. Xác định giá bán để của hàng đó thu được lợi nhuận lớn nhất, biết rằng giá nhập về ban đầu mỗi quả là 30.000 đồng. + Chọn khẳng định sai: A. Mỗi đỉnh của khối đa diện là đỉnh chung của ít nhất 3 mặt. B. Hai mặt bất kì của khối đa diện luôn có ít nhất một điểm chung. C. Mỗi mặt của khối đa diện có ít nhất ba cạnh. D. Mỗi cạnh của khối đa diện là cạnh chung của đúng 2 mặt của khối đa diện. + Cho tứ diện ABCD có AB = CD. Mặt phẳng (a) qua trung điểm của AC và song song với AB, CD cắt ABCD theo thiết diện là: A. Hình vuông B. Hình thoi C. Hình tam giác D. Hình chữ nhật.
Đề khảo sát chất lượng lần 1 Toán 12 năm 2020 - 2021 trường Quế Võ 1 - Bắc Ninh
Đề khảo sát chất lượng lần 1 Toán 12 năm 2020 – 2021 trường Quế Võ 1 – Bắc Ninh mã đề 101 gồm 06 trang với 50 câu trắc nghiệm, thời gian làm bài 90 phút, đề thi có đáp án mã đề 101, 239, 353, 477, 593, 615, 737, 859, 971, 193, 275, 397. Trích dẫn đề khảo sát chất lượng lần 1 Toán 12 năm 2020 – 2021 trường Quế Võ 1 – Bắc Ninh : + Cho hàm số f(x) liên tục trên R và hàm số f'(x) có bảng biến thiên như sau. Tìm mệnh đề đúng? A. Hàm số y = f(x) có 2 điểm cực tiểu và 1 điểm cực đại. B. Hàm số y = f(x) có 1 điểm cực tiểuvà 1 điểm cực đại. C. Hàm số không có giá trị lớn nhất và không có giá trị nhỏ nhất. D. Hàm số y = f(x) có 1 điểm cực tiểu và 2 điểm cực đại. + Trong mặt phẳng với hệ tọa độ Oxy, cho đường tròn x^2 + y^2 – 2x – 4y – 11 = 0. Tìm bán kính của đường tròn (C’) là ảnh của đường tròn (C) qua phép đồng dạng có được bằng cách thực hiện liên tiếp phép vị tự tâm O tỉ số k = −2020 và phép tịnh tiến theo véctơ v = (2019;2020) là? + Cho một hình nón đỉnh S có độ dài đường sinh bằng 10cm, bán kính đáy bằng 6cm. Cắt hình nón đã cho bởi một mặt phẳng song song với mặt phẳng chứa đáy được một hình nón (N) đỉnh S có chiều cao bằng 16/5 cm. Tính diện tích xung quay của khối nón (N).