Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

04 đề ôn tập kiểm tra giữa học kì 1 môn Toán 10 năm học 2023 - 2024

Tài liệu gồm 23 trang, tuyển tập 04 đề ôn tập kiểm tra giữa học kì 1 môn Toán 10 năm học 2023 – 2024; các đề được biên soạn theo cấu trúc 70% trắc nghiệm kết hợp 30% tự luận (theo thang điểm), thời gian làm bài 90 phút (không kể thời gian phát đề). Trích dẫn 04 đề ôn tập kiểm tra giữa học kì 1 môn Toán 10 năm học 2023 – 2024 : + Trong năm nay, một cửa hàng điện lạnh dự định kinh doanh hai loại máy điều hòa: điều hòa hai chiều và điều hòa một chiều với số vốn ban đầu không vượt quá 1,2 tỉ đồng. Điều hòa hai chiều Điều hòa một chiều. Giá mua vào 20 triệu đồng/1 máy 10 triệu đồng/1 máy. Lợi nhuận dự kiến 3,5 triệu đồng/1 máy 2 triệu đồng/1 máy. Cửa hàng ước tính rằng tổng nhu cầu của thị trường sẽ không vượt quá 100 máy cả hai loại, nếu là chủ cửa hàng thì em cần đầu tư kinh doanh mỗi loại bao nhiêu máy để lợi nhuận thu được là lớn nhất (giả sử cửa hàng bán hết tất cả sản phẩm)? + Một lớp có 35 học sinh đăng kí mua sách tham khảo toán 10 và văn 10 của nhà xuất bản Đức Minh. Mỗi học sinh mua không quá một quyển mỗi môn. Theo chính sách của nhà xuất bản thì mỗi quyển sách toán 10 này có giá 50.000đ, mỗi quyển văn có giá 40.000đ; nếu học sinh mua cả hai quyển thì giá giảm 10% mỗi quyển. Theo thống kê thì có 25 học sinh đăng kí mua sách toán 10, 20 học sinh mua sách văn 10. Hỏi số tiền mua sách của lớp là bao nhiêu? + Trên nóc một tòa nhà có một cột ăng-ten cao 6m. Tại vị trí cao 8m so với mặt đát, một người đứung quan sát có thể nhìn thấy đỉnh và chân của cột ăng-ten dưới một góc lần lượt là 50 và 40 so với phương ngang (như hình vẽ). Tính chiều cao của tòa nhà đó (kết quả làm tròn đến chữ số thận phân thứ hai).

Nguồn: toanmath.com

Đọc Sách

Đề thi giữa học kì 1 (HK1) lớp 10 môn Toán năm 2020 2021 trường THPT Trần Nguyên Hãn Hải Phòng
Nội dung Đề thi giữa học kì 1 (HK1) lớp 10 môn Toán năm 2020 2021 trường THPT Trần Nguyên Hãn Hải Phòng Bản PDF Thứ Tư ngày 04 tháng 11 năm 2020, trường THPT Trần Nguyên Hãn, quận Lê Chân, thành phố Hải Phòng tổ chức kỳ thi khảo sát chất lượng môn Toán lớp 10 giai đoạn giữa học kỳ 1 năm học 2020 – 2021. Đề thi giữa HK1 Toán lớp 10 năm 2020 – 2021 trường THPT Trần Nguyên Hãn – Hải Phòng mã đề 001 trang 04 trang với 20 câu trắc nghiệm và 04 câu tự luận, thời gian học sinh làm bài thi là 90 phút, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi giữa HK1 Toán lớp 10 năm 2020 – 2021 trường THPT Trần Nguyên Hãn – Hải Phòng : + Phát biểu nào sau đây là mệnh đề? A. Đề trắc nghiệm môn Toán năm nay dễ quá trời! B. Cấm học sinh quay cóp trong kiểm tra. C. Bạn biết câu nào là đúng không? D. Toán học là một môn thi trong kỳ thi Tốt nghiệp trung học phổ thông Quốc Gia. + Trong lớp 10C2 có 16 học sinh giỏi môn Toán, 15 học sinh giỏi môn Lý và 11 học sinh giỏi môn Hóa. Biết rằng có 12 học sinh vừa giỏi Toán và Lý, 8 học sinh vừa giỏi Lý và Hóa, 9 học sinh vừa giỏi Hóa và Toán, trong đó chỉ có 11 học sinh giỏi đúng hai môn. Hỏi có bao nhiêu học sinh của lớp giỏi cả ba môn Toán, Lý, Hóa? + Cho hàm số f(x) = ax^2 + bx + c đồ thị như hình bên. Tìm tất cả các giá trị của tham số thực m để phương trình f(|x|) – 1 = m có đúng 3 nghiệm phân biệt. File WORD (dành cho quý thầy, cô):
Đề thi giữa học kì 1 (HK1) lớp 10 môn Toán năm 2020 2021 trường THPT Tây Hồ Hà Nội
Nội dung Đề thi giữa học kì 1 (HK1) lớp 10 môn Toán năm 2020 2021 trường THPT Tây Hồ Hà Nội Bản PDF Đề thi giữa học kỳ 1 Toán lớp 10 năm 2020 – 2021 trường THPT Tây Hồ – Hà Nội gồm 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 60 phút. Trích dẫn đề thi giữa học kỳ 1 Toán lớp 10 năm 2020 – 2021 trường THPT Tây Hồ – Hà Nội : + Cho hai tập hợp A = {x thuộc R | x + 3 >= 0} và B = {x thuộc R | x – 2 < 0}. 1) Hãy viết các tập hợp trên theo khoảng, nửa khoảng và biểu diễn các tập trên trục số. 2) Hãy
Đề thi giữa học kì 1 (HK1) lớp 10 môn Toán năm 2020 2021 trường THPT Nguyễn Công Trứ TP HCM
Nội dung Đề thi giữa học kì 1 (HK1) lớp 10 môn Toán năm 2020 2021 trường THPT Nguyễn Công Trứ TP HCM Bản PDF Thứ Năm ngày 29 tháng 10 năm 2020, trường THPT Nguyễn Công Trứ, thành phố Hồ Chí Minh tổ chức kiểm tra khảo sát chất lượng môn Toán lớp 10 giai đoạn giữa học kỳ 1 năm học 2020 – 2021. Đề thi giữa HK1 Toán lớp 10 năm 2020 – 2021 trường THPT Nguyễn Công Trứ – TP HCM gồm 01 trang với 06 bài toán dạng tự luận, thời gian học sinh làm bài thi là 60 phút. Trích dẫn đề thi giữa HK1 Toán lớp 10 năm 2020 – 2021 trường THPT Nguyễn Công Trứ – TP HCM : + Cho mệnh đề: “Với mọi n thuộc N thì n^2 > 2” (1). Hãy xét tính đúng – sai (có giải thích) của mệnh đề (1) và lập mệnh đề phủ định của mệnh đề (1). + Cho mệnh đề: “Nếu ABCD là hình bình hành thì AB = DC”. Phát biểu mệnh đề đảo của mệnh đề trên và nêu tính đúng – sai của mệnh đề đảo này. + Cho tam giác ABC vuông cân tại đỉnh A, có AB = 4. Gọi I là điểm thỏa AI = 3/4.AB và E là trung điểm AC. a) Tính IE theo hai véctơ AB và AC. b) Điểm M thỏa 3MA – 2MB + MC = BA. Chứng minh MA song song với BC. c) Tính |EA + 3EB|.
Đề thi giữa học kì 1 (HK1) lớp 10 môn Toán chuyên năm 2020 2021 trường chuyên Hà Nội Amsterdam
Nội dung Đề thi giữa học kì 1 (HK1) lớp 10 môn Toán chuyên năm 2020 2021 trường chuyên Hà Nội Amsterdam Bản PDF Thứ Tư ngày 28 tháng 10 năm 2020, trường THPT chuyên Hà Nội – Amsterdam tổ chức kỳ thi kiểm tra chất lượng giữa học kì 1 môn Toán lớp 10 chuyên năm học 2020 – 2021. Đề thi giữa HK1 Toán lớp 10 chuyên năm 2020 – 2021 trường chuyên Hà Nội – Amsterdam gồm 01 trang với 03 bài toán dạng tự luận, thời gian làm bài 60 phút. Trích dẫn đề thi giữa HK1 Toán lớp 10 chuyên năm 2020 – 2021 trường chuyên Hà Nội – Amsterdam : + Cho tam giác ABC. Gọi D, I là các điểm xác định bởi các hệ thức sau: 3DB – 2DC = 0, IA + 3IB – 2IC = 0. a) Chứng minh các điểm A, I, D thẳng hàng. b) Tìm tập hợp các điểm M thỏa mãn |MA + 3MB – 2MC| = |2MA – MB – MC|. c) Gọi E và F lần lượt là các điểm thuộc tia AB, AC thỏa mãn điều kiện: AB = (2k + 1)AE; AC = (k – 2)AF (k > 2). Chứng minh đường thẳng EF luôn đi qua một điểm cố định khi k thay đổi (k > 2). + Cho ánh xạ f: A → B trong đó A = {1; 2; 3; 4} và B = {1; 2; 3; 4; 5; 6; 7; 8; 9; 10}. a) Tính số ánh xạ f thỏa mãn điều kiện: f là đơn ánh và f(1) < f(2) < f(3) < f(4). b) Tính số ánh xạ f thỏa mãn |f(i) – f(j)| > 1 với mọi i, j thuộc A, i khác j.