Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử Toán TN THPT 2021 lần 2 trường THPT Cầm Bá Thước - Thanh Hóa

Đề thi thử Toán TN THPT 2021 lần 2 trường THPT Cầm Bá Thước – Thanh Hóa gồm 04 mã đề: 111 – 222 – 333 – 444; đề được biên soạn bám sát cấu trúc đề tham khảo tốt nghiệp THPT 2021 môn Toán của Bộ Giáo dục và Đào tạo; đề thi có đáp án; kỳ thi được diễn ra vào sáng thứ Hai ngày 31 tháng 05 năm 2021. Trích dẫn đề thi thử Toán TN THPT 2021 lần 2 trường THPT Cầm Bá Thước – Thanh Hóa : + Sân vận động Sports Hub (Singapore) là nơi diễn ra lễ khai mạc Đại hội thể thao Đông Nam Á được tổ chức ở Singapore năm 2015. Nền sân là một elip (E) có trục lớn dài 150 m, trục bé dài 90 m (Hình 3). Nếu cắt sân vận động theo một mặt phẳng vuông góc với trục lớn của (E) và cắt elip (E) ở M, N (Hình a) thì ta được thiết diện luôn là một phần của hình tròn có tâm I (phần tô đậm trong Hình b) với MN là một dây cung và góc MIN = 90◦. Để lắp máy điều hòa không khí cho sân vận động thì các kỹ sư cần tính thể tích phần không gian bên dưới mái che và bên trên mặt sân, coi như mặt sân là một mặt phẳng và thể tích vật liệu làm mái không đáng kể. Hỏi thể tích đó xấp xỉ bao nhiêu? + Cho hai hàm số đa thức bậc bốn y = f(x) và y = g(x) có đồ thị như hình vẽ bên dưới, trong đó đường đậm hơn là đồ thị hàm số y = f(x). Biết rằng hai đồ thị này tiếp xúc với nhau tại điểm có hoành độ −3 và cắt nhau tại hai điểm phân biệt nữa có hoành độ lần lượt là −1 và 3. Bất phương trình f(x) ≥ g(x) + m nghiệm đúng với mọi x ∈ [−3; 3] khi và chỉ khi m ≤ a + b√c 9, với a, b là các số nguyên, c là số nguyên tố. Tính S = a + b + c. + Một tấm bìa hình tròn có bán kính bằng 5 được cắt thành hai hình quạt, sau đó quấn hai hình quạt đó thành hai hình nón (không có đáy). Biết một trong hai hình nón này có diện tích xung quanh là 15π. Tính thể tích hình nón còn lại. Giả sử chiều rộng các mép dán không đáng kể.

Nguồn: toanmath.com

Đọc Sách

24 đề tập huấn thi THPT Quốc gia 2017 môn Toán sở GD và ĐT Bắc Ninh
Tuyển tập 24 đề tập huấn thi THPT Quốc gia 2017 môn Toán sở GD và ĐT Bắc Ninh, mỗi đề gồm 50 câu hỏi trắc nghiệm, đáp án các đề nằm ở trang cuối tài liệu.
Đề kiểm tra chất lượng Toán 12 năm học 2016 - 2017 trường Phổ thông Năng khiếu - TP.HCM lần 1
Đề kiểm tra chất lượng Toán 12 năm học 2016 – 2017 trường Phổ thông Năng khiếu – TP.HCM lần 1 gồm 50 câu hỏi trắc nghiệm. Trích một số bài toán trong đề: 1. Tìm tất cả giá trị thực của tham số m sao cho đồ thị của hàm số y = x^4 + 2mx + 1 có ba điểm cực trị và đường tròn đi qua ba điểm ấy có bán kính bằng 1? 2. Cho hình chóp S.ABCD có đáy là hình vuông ABCD cạnh a, SA⊥(ABCD) và SA = a. Gọi E là điểm đối xứng của C qua D. Bán kính mặt cầu ngoại tiếp hình chóp S.EBC là? 3. Trong không gian cho đường thẳng 4 và điểm A không nằm trên 4. Qua A dựng đường thẳng d bất kỳ sao cho 4 và d chéo nhau. Gọi MN là đoạn vuông góc chung của d và 4 với M nằm trên d. Khi đó tập hợp những điểm M là?
Đề khảo sát chất lượng THPT Quốc gia 2017 môn Toán sở GD và ĐT Vĩnh Phúc
Đề khảo sát chất lượng THPT Quốc gia 2017 môn Toán sở GD và ĐT Vĩnh Phúc gồm 4 mã đề, mỗi đề gồm 50 câu hỏi trắc nghiệm, có đáp án. Trích một số bài toán trong đề: + Tính theo a thể tích khối lăng trụ đứng ABC.A’B’C’ có đáy ABC là tam giác vuông cân tại A, mặt bên BCC’B’ là hình vuông cạnh 2a. + Chọn khẳng định sai. A. Mỗi cạnh của khối đa diện là cạnh chung của đúng 2 mặt của khối đa diện B. Hai mặt bất kì của khối đa diện luôn có ít nhất một điểm chung C. Mỗi đỉnh của khối đa diện là đỉnh chung của ít nhất 3 mặt D. Mỗi mặt của khối đa diện có ít nhất ba cạnh + Một người gửi tiết kiệm theo thể thức lãi kép như sau: Mỗi tháng người này tiết kiệm một số tiền cố định là X đồng rồi gửi vào ngân hàng theo kì hạn một tháng với lãi suất 0,8%/tháng. Tìm X để sau ba năm kể từ ngày gửi lần đầu tiên người đó có được tổng số tiền là 500 triệu đồng.
Đề khảo sát chất lượng Toán 12 năm học 2016 - 2017 trường THPT Tử Đà - Phú Thọ lần 1
Đề khảo sát chất lượng Toán 12 năm học 2016 – 2017 trường THPT Tử Đà – Phú Thọ lần 1 gồm 50 câu hỏi trắc nghiệm. Trích một số bài toán trong đề thi: + Cho lăng trụ ABC.A’B’C’ có đáy là tam giác vuông cân tại B, AC = 2a. Hình chiếu vuông góc của A’ lên mặt phẳng (ABC) là trung điểm cạnh AC, đường thẳng AB’ tạo với mặt phẳng (ABC) một góc 45 độ. Thể tích khối lăng trụ ABC.A’B’C’ bằng? + Một hoa văn trang trí được tạo ra từ một miếng bìa mỏng hình vuông cạnh 10 cm bằng cách khoét bỏ đi bốn phần bằng nhau có hình dạng parabol như hình bên. Biết AB = 5cm, OH = 4cm. Tính diện tích bề mặt hoa văn đó. + Người ta định tạo ra một cái hộp chữ nhật không có nắp, với thể tích bằng đúng 256 cm3 từ một tấm tôn hình vuông cạnh a bằng cách cắt đi ở bốn góc bốn hình vuông bằng nhau rồi gấp lại. Độ dài cạnh hình vuông bị cắt bằng bao nhiêu để diện tích phần tôn phải sử dụng (làm một mặt đáy và bốn mặt bên của hộp) là nhỏ nhất?