Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Lý thuyết và bài tập chuyên đề hàm số

Nội dung Lý thuyết và bài tập chuyên đề hàm số Bản PDF - Nội dung bài viết Lý thuyết và bài tập chuyên đề hàm sốCHỦ ĐỀ 1: HÀM SỐ BẬC NHẤTCHỦ ĐỀ 2: HÀM SỐ Y = AXCHỦ ĐỀ 3: HÀM SỐ Y = AX + BCHỦ ĐỀ 4: HÀM SỐ Y = AX^2 Lý thuyết và bài tập chuyên đề hàm số Tài liệu này bao gồm 55 trang lý thuyết quan trọng và hướng dẫn cách giải các bài toán liên quan đến hàm số và đồ thị hàm số như y = ax, y = ax + b, y = ax^2, trong chương trình Toán lớp 9. Đây là tài liệu phù hợp để ôn luyện và nâng cao kiến thức Toán của học sinh lớp 9, bồi dưỡng học sinh giỏi môn Toán, và luyện thi vào lớp 10. Chi tiết nội dung tài liệu lý thuyết và bài tập chuyên đề hàm số: CHỦ ĐỀ 1: HÀM SỐ BẬC NHẤT Nếu y phụ thuộc vào x và mỗi giá trị của x tương ứng với duy nhất một giá trị của y, thì y được gọi là hàm số của x. Đồ thị của hàm số y = f(x) là tập hợp các điểm biểu diễn các cặp giá trị (x;f(x)) trên mặt phẳng tọa độ. Y là hàm hằng nếu y luôn nhận một giá trị không đổi khi x thay đổi. Hàm số đồng biến và hàm số nghịch biến. CHỦ ĐỀ 2: HÀM SỐ Y = AX Hàm số y = ax (a khác 0) xác định với mọi số thực a. Đồ thị của hàm số y = ax là một đường thẳng đi qua gốc tọa độ. Hàm số y = ax đồng biến khi a > 0 và nghịch biến khi a < 0. CHỦ ĐỀ 3: HÀM SỐ Y = AX + B Hàm số bậc nhất: y = ax + b, với a và b là số thực và a khác 0. Hàm số y = ax + b (a khác 0) xác định với mọi số thực. Hàm số y = ax + b đồng biến khi a > 0 và nghịch biến khi a < 0. Đồ thị của hàm số bậc nhất là một đường thẳng cắt cả hai trục tọa độ. CHỦ ĐỀ 4: HÀM SỐ Y = AX^2 Hàm số y = ax^2 (a khác 0) xác định với mọi x thuộc R. Nếu a > 0, hàm số nghịch biến với x < 0, đồng biến với x > 0, và bằng 0 với x = 0. Nếu a < 0, hàm số đồng biến với x < 0, nghịch biến với x > 0, và bằng 0 với x = 0. Đồ thị của hàm số là một parabol đi qua gốc tọa độ và có trục tung là trục đối xứng. Đây là những kiến thức căn bản và quan trọng về hàm số mà học sinh cần nắm vững để có thể giải quyết các bài toán Toán hiệu quả. Hãy ôn tập và áp dụng những kiến thức này vào thực hành để nâng cao trình độ Toán của bạn!

Nguồn: sytu.vn

Đọc Sách

Một kỹ năng khi sử dụng phương pháp đặt ẩn phụ giải phương trình - hệ phương trình
Tài liệu gồm 05 trang, được biên soạn bởi thầy giáo Vũ Hồng Phong (giáo viên Toán trường THPT Tiên Du 1, huyện Tiên Du, tỉnh Bắc Ninh), hướng dẫn một kỹ năng khi sử dụng phương pháp đặt ẩn phụ giải phương trình – hệ phương trình. 1. KIẾN THỨC CẦN NHỚ. Một điều quan trọng giúp chúng ta giải được một phương trình (PT) hay hệ phương trình bằng cách đặt ẩn phụ đó là phát hiện được các mối liên hệ giữa các ẩn với nhau. Mối liên hệ này gồm có: + Mối liên hệ giữa các ẩn mới. + Mối liên hệ giữa các ẩn cũ. + Mối liên hệ giữa các ẩn mới với các ẩn cũ. Mối liên hệ giữa các ẩn được thể hiện dưới dạng các đẳng thức hoặc bất đẳng thức. 2. VÍ DỤ MINH HỌA. 3. BÀI TẬP ĐỀ NGHỊ.