Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tuyển tập 20 đề ôn thi cuối học kì 1 (HK1) lớp 10 môn Toán

Nội dung Tuyển tập 20 đề ôn thi cuối học kì 1 (HK1) lớp 10 môn Toán Bản PDF Tài liệu gồm 59 trang, được chia sẻ bởi thầy giáo Nguyễn Chín Em, tuyển tập 20 đề ôn thi cuối học kì 1 môn Toán lớp 10, giúp học sinh khối lớp 10 rèn luyện để chuẩn bị cho kì thi HK1 Toán lớp 10 năm học 2021 – 2022. Trích dẫn tài liệu tuyển tập 20 đề ôn thi cuối học kì 1 môn Toán lớp 10: + Trong ngày hội mua sắm trực tuyến Online Friday, cửa hàng T đã tiến hành giảm giá và bán đồng giá nhiều sản phẩm. Các loại áo bán đồng giá x (đồng), các loại mũ bán đồng giá y (đồng), các loại túi xách bán đồng giá z (đồng). Ba người bạn Nga, Lan, Hòa đã cùng nhau mua sắm trực tuyến tại của hàng T. Nga mua 2 chiếc áo, 1 mũ, 3 túi xách hết 1450000 (đồng); Lan mua 1 chiếc áo, 2 mũ, 1 túi xách hết 1050000 (đồng); Hòa mua 3 chiếc áo, 2 túi xách hết 1100000 (đồng). Hỏi x, y, z lần lượt là bao nhiêu? A. 150000; 250000;350000. B. 300000;300000;250000. C. 200000;250000;250000. D. 200000;300000; 250000. + Cho 2 phương trình 2 x x 1 0 1 và 1 2 x x 2. Khẳng định đúng nhất trong các khẳng định sau là: A. (1) và (2) tương đương. B. Phương trình (1) là hệ quả của phương trình (2). C. Phương trình (2) là hệ quả của phương trình (1). D. Cả A, B, C đều đúng. + Cho ba điểm A B C phân biệt. Tập hợp những điểm M mà CM CB CA CB là: A. Đường thẳng đi qua A và vuông góc với BC. B. Đường thẳng đi quàa B và vuông góc với AC. C. Đường thẳng đí qua C (và vuông góc với AB. D. Đường tròn đường kính AB. + Trong một lớp học có 100 học sinh, 35 học sinh chơi bóng đá và 45 học sinh chơi bóng chuyền, 10 học sinh chơi cả hai môn thể thao. Hỏi có bao nhiêu học sinh không chơi môn thể thao nào? (Biết rằng chỉ có hai môn thể thao là bóng đá và bóng chuyền). + Cho tam giác ABC. Gọi F là điểm trên cạnh BC kéo dài sao cho 5 2 FB FC 1 1 2 2 x x x x 13 Chứng minh 5 2 3 3 AF AB AC b) Trong mặt phẳng tọa độ Oxy cho các điểm A 1 2 B 2 3 C 0 2. Xác định tọa độ điểm H là hình chiếu vuông góc của A lên BC. Tính diện tích tam giác ABC. c) Cho tam giác nhọn ABC nội tiếp đường tròn O. Tìm điểm M thuộc O để biểu thức T MA MB MC 3 5 đạt giá trị lớn nhất và giá trị nhỏ nhất. File WORD (dành cho quý thầy, cô):

Nguồn: sytu.vn

Đọc Sách

Đề thi học kì 1 (HK1) ban nâng cao trường Chu Văn An Hà Nội 2014 2015
Nội dung Đề thi học kì 1 (HK1) ban nâng cao trường Chu Văn An Hà Nội 2014 2015 Bản PDF Đề thi HK1 lớp 10 ban nâng cao trường Chu Văn An – Hà Nội năm học 2014 – 2015 gồm 5 bài toán, có lời giải và thang điểm. Các nội dung thi gồm: + Khảo sát hàm số và bài toán liên quan + Giải hệ phương trình 2 ẩn và phương trình chứa 3 căn + Tìm tọa độ chân đường phân giác + Tính tích vô hướng, tìm giá trị k thỏa mãn biểu thức vector + Biện luận phương trình
Đề thi học kì 1 (HK1) ban nâng cao trường Chu Văn An Hà Nội 2013 2014
Nội dung Đề thi học kì 1 (HK1) ban nâng cao trường Chu Văn An Hà Nội 2013 2014 Bản PDF Đề thi HK1 lớp 10 ban nâng cao trường Chu Văn An – Hà Nội năm học 2013 – 2014 gồm 6 bài toán, có đáp án và thang điểm. Các nội dung thi gồm: + Khảo sát hàm số, tìm điều kiện của m + Giải phương trình và hệ phương trình + Bài toán tọa độ + Bài toán tọa độ liên quan vector + Bài tính và chứng minh vector + Biện luận phương trình chứa căn
Đề thi học kì 1 (HK1) ban cơ bản trường Chu Văn An Hà Nội 2014 2015
Nội dung Đề thi học kì 1 (HK1) ban cơ bản trường Chu Văn An Hà Nội 2014 2015 Bản PDF Đề thi HK1 lớp 10 ban cơ bản trường Chu Văn An – Hà Nội năm học 2014 – 2015 có lời giải và thang điểm. Các nội dung thi bao gồm: + Khảo sát và vẽ đồ thị hàm số + Giải phương trình, hệ phương trình + Bài toán tọa điị trong mặt phẳng + Vector + Tìm tọa độ điểm thỏa mãn biểu thức vector
Đề thi học kì 1 (HK1) ban cơ bản trường Chu Văn An Hà Nội 2013 2014
Nội dung Đề thi học kì 1 (HK1) ban cơ bản trường Chu Văn An Hà Nội 2013 2014 Bản PDF Đề thi HK1 lớp 10 ban cơ bản trường Chu Văn An – Hà Nội năm học 2013 – 2014 có lời giải chi tiết và thang điểm. Các nội dung thi bao gồm: + Khảo sát và vẽ đồ thị hàm số + Giải phương trình và hệ phương trình + Bài toán vector + Biện luận phương trình