Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh môn Toán năm 2018 2019 sở GD và ĐT Tiền Giang

Nội dung Đề tuyển sinh môn Toán năm 2018 2019 sở GD và ĐT Tiền Giang Bản PDF - Nội dung bài viết Đề tuyển sinh môn Toán năm 2018-2019 sở GD và ĐT Tiền Giang Đề tuyển sinh môn Toán năm 2018-2019 sở GD và ĐT Tiền Giang Đề tuyển sinh lớp 10 môn Toán năm 2018-2019 sở GD và ĐT Tiền Giang bao gồm 1 trang với 5 bài toán tự luận. Thí sinh sẽ có thời gian làm bài trong 120 phút. Kỳ thi sẽ diễn ra vào ngày 05/06/2018. Đề thi sẽ có lời giải chi tiết để giúp thí sinh hiểu rõ hơn về cách giải các bài toán. Trích đề tuyển sinh lớp 10 môn Toán năm 2018-2019 sở Tiền Giang: Hai bến sông A và B cách nhau 60 km. Một ca nô đi xuôi dòng từ A đến B rồi ngược dòng từ B về A. Thời gian đi xuôi dòng ít hơn thời gian ngược dòng là 20 phút. Tính vận tốc ngược dòng của ca nô, biết vận tốc xuôi dòng lớn hơn vận tốc ngược dòng của ca nô là 6 km/h. Một hình trụ có diện tích xung quanh bằng 256 cm2 và bán kính đáy bằng 1/2 đường cao. Tính bán kính đáy và thể tích hình trụ. Cho phương trình x^2 - 2x - 5 = 0 có hai nghiệm x1, x2. Không giải phương trình, hãy tính giá trị của các biểu thức: B = x1^2 + x2^2, C = x1^5 + x2^5.

Nguồn: sytu.vn

Đọc Sách

Đề tuyển sinh lớp 10 THPT môn Toán năm 2020 - 2021 sở GDĐT Hà Nội
Sáng thứ Bảy ngày 18 tháng 07 năm 2020, sở Giáo dục và Đào tạo thành phố Hà Nội tổ chức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán năm học 2020 – 2021. Đề tuyển sinh lớp 10 THPT môn Toán năm 2020 – 2021 sở GD&ĐT Hà Nội gồm có 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 120 phút (không kể thời gian phát đề), đáp án và lời giải chi tiết của đề thi sẽ được THCS. cập nhật trong thời gian sớm nhất có thể. Trích dẫn đề tuyển sinh lớp 10 THPT môn Toán năm 2020 – 2021 sở GD&ĐT Hà Nội : + Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình: Quãng đường từ nhà An đến nhà Bình dài 3 km. Buổi sáng, An đi bộ từ nhà An đến nhà Bình. Buổi chiều cùng ngày, An đi xe đạp từ nhà Bình về nhà An trên cùng quãng đường đó với vận tốc lớn hơn vận tốc đi bộ của An là 9 km/h. Tính vận tốc đi bộ của An, biết thời gian đi buổi chiều ít hơn thời gian đi buổi sáng là 45 phút (giả định rằng An đi bộ với vận tốc không đổi trên toàn bộ quãng đường đó). + Một quả bóng bàn có dạng một hình cầu có bán kính bằng 2 cm. Tính diện tích bề mặt của quả bóng bàn đó (lấy pi = 3,14). + Trong mặt phẳng tọa độ Oxy, xét đường thẳng (d): y = mx +4 với m khác 0. a) Gọi A là giao điểm của đường thẳng (d) và trục Oy. Tìm tọa độ của điểm A. b) Tìm tất cả giá trị của m để đường thẳng (d) cắt trục Ox tại điểm B sao cho tam giác OAB là tam giác cân.
Đề tuyển sinh lớp 10 môn Toán năm 2020 - 2021 trường THPT chuyên Thái Bình (đề chung)
Đề tuyển sinh lớp 10 môn Toán năm 2020 – 2021 trường THPT chuyên Thái Bình (đề chung) là đề thi vòng 1, được dành cho tất cả các thí sinh tham dự kỳ thi, kỳ thi được diễn ra vào thứ Sáu ngày 17 tháng 07 năm 2020. Trích dẫn đề tuyển sinh lớp 10 môn Toán năm 2020 – 2021 trường THPT chuyên Thái Bình (đề chung) : + Trong mặt phẳng tọa độ Oxy, cho parabol (P): y = x^2/2 và hai đường thẳng (d1): y = 5x + 2, (d2): y = (m^2 + 1)x + m (với m là tham số). 1. Tìm m để (d1) song song với (d2). 2. Tìm m để (d2) cắt parabol (P) tại hai điểm phân biệt có hoành độ x1, x2 sao cho Q = x1 + x2 – 4x1x2 đạt giá trị nhỏ nhất. + Cho phương trình x^2 – 2(m + 1)x + m^2 – 3m = 0 (với m là tham số). 1. Giải phương trình với m = 0. 2. Tìm m để phương trình có hai nghiệm x1, x2 thỏa mãn: (x1 + 2)(x2 + 2) = 10. [ads] + Cho đường tròn (O;R) đường kính AB. Trên tia AB lấy điểm C nằm ngoài đường tròn, kẻ đường thẳng d vuông góc với AB tại C. Gọi E là trung điểm của đoạn thẳng OB, đường thẳng đi qua E cắt đưòng tròn (O) ở M và N (M khác A và B). Tia AM, AN thứ tự cắt d ở P và Q. 1. Chứng minh tứ giác BCPM nội tiếp. 2. Chứng minh AM.AP = AN.AQ. 3. Giả sử MN = 7R/4. Tính độ dài đoạn ME, NE theo R. 4. Cho A, B, C cố định. Chứng minh rằng khi MN quay quanh điểm E (M khác A và B) thì tâm của đường tròn ngoại tiếp tam giác APQ luôn nằm trên một đường thẳng cố định.
Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2020 - 2021 sở GDĐT TP HCM
Thứ Sáu ngày 17 tháng 07 năm 2020, sở Giáo dục và Đào tạo thành phố Hồ Chí Minh tổ chức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán chuyên năm học 2020 – 2021. Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2020 – 2021 sở GD&ĐT TP HCM gồm 01 trang với 06 bài toán, thời gian làm bài 150 phút, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2020 – 2021 sở GD&ĐT TP HCM : + Tìm tất cả các số nguyên dương x, y thỏa mãn phương trình 3^x – y^3 = 1. + Đường tròn (I) nội tiếp tam giác ABC tiếp xúc với các cạnh AB, BC, CA lần lượt tại D, E, F. Kẻ đường kính EJ của đường tròn (I). Gọi d là đường thẳng qua A song song với BC. Đường thẳng JD cắt d, BC lần lượt tại L, H. a) Chứng minh: E, F, L thẳng hàng. b) JA, JF cắt BC lần lượt tại M, K. Chứng minh: MH vuông góc MK. [ads] + Cho tam giác nhọn ABC (AB < BC < CA) nội tiếp đường tròn (O). Từ A kẻ đường thẳng song song với BC cắt (O) tại A1. Từ B kẻ đường thẳng song song với AC cắt (O) tại B1. Từ C kẻ đường thẳng song song với AB cắt (O) tại C1. Chứng minh rằng các đường thẳng qua A1, B1, C1 lần lượt vuông góc với BC, CA, AB đồng quy.
Đề tuyển sinh vào 10 môn Toán chuyên năm 2020 - 2021 sở GDĐT Đồng Tháp
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi tuyển sinh vào lớp 10 môn Toán chuyên năm học 2020 – 2021 sở Giáo dục và Đào tạo tỉnh Đồng Tháp; kỳ thi được diễn ra vào ngày 24 tháng 07 năm 2020; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm.