Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tài liệu lớp 9 môn Toán chủ đề biến đổi đơn giản biểu thức chứa căn bậc hai

Nội dung Tài liệu lớp 9 môn Toán chủ đề biến đổi đơn giản biểu thức chứa căn bậc hai Bản PDF - Nội dung bài viết Tài liệu học Toán lớp 9 chủ đề biến đổi đơn giản biểu thức chứa căn bậc hai Tài liệu học Toán lớp 9 chủ đề biến đổi đơn giản biểu thức chứa căn bậc hai Tài liệu này bao gồm 22 trang, cung cấp kiến thức cần nhớ, các dạng toán và bài tập liên quan đến chủ đề biến đổi đơn giản biểu thức chứa căn bậc hai trong chương trình môn Toán lớp 9. Mỗi bài tập đều có đáp án và lời giải chi tiết để học sinh dễ dàng tự học và tự kiểm tra kiến thức của mình. A. Tóm tắt lý thuyết: Đưa thừa số ra ngoài dấu căn hoặc vào trong dấu căn. Khử mẫu của biểu thức lấy căn. Rút gọn biểu thức chứa căn bậc hai. Trục căn thức ở mẫu. B. Bài tập và các dạng toán: Dạng 1: Đưa thừa số ra ngoài hoặc vào trong dấu căn. Dạng 2: So sánh các căn bậc hai. Dạng 3: Rút gọn biểu thức chứa căn bậc hai. Dạng 4: Khử mẫu của biểu thức dưới dấu căn bậc hai. Dạng 5: Trục căn thức ở mẫu. Dạng 6: Sử dụng phép biến đổi căn thức bậc hai để giải phương trình. BÀI TẬP TRẮC NGHIỆM BÀI TẬP VỀ NHÀ File WORD dành cho quý thầy, cô để dễ dàng chỉnh sửa và sử dụng.

Nguồn: sytu.vn

Đọc Sách

Các dạng toán về căn bậc hai và căn bậc ba
Nội dung Các dạng toán về căn bậc hai và căn bậc ba Bản PDF - Nội dung bài viết Các dạng toán về căn bậc hai và căn bậc ba Các dạng toán về căn bậc hai và căn bậc ba Tài liệu này bao gồm 44 trang, được phân loại và cung cấp hướng dẫn giải các dạng toán liên quan đến căn bậc hai và căn bậc ba, giúp học sinh lớp 9 tiện tham khảo trong quá trình học chương trình Toán lớp 9 (tập 1) phần Đại số chương 1. Vấn đề 1: Căn bậc hai A. Tóm tắt lý thuyết: Trong phần này, bạn sẽ được cung cấp kiến thức căn bậc hai, các tính chất cơ bản và cách tính căn bậc hai của một số học. B. Bài tập và các dạng toán: - Dạng 1: Tìm căn bậc hai và căn bậc hai số học của một số. - Dạng 2: So sánh các căn bậc hai số học. C. Bài tập về nhà: Sau khi học và làm các bài tập trong phần này, bạn sẽ được yêu cầu tự làm thêm bài tập về nhà để củng cố kiến thức. Vấn đề 2: Căn thức bậc hai Phần này sẽ giúp bạn hiểu rõ về căn thức bậc hai và cách giải các bài toán liên quan đến căn thức bậc hai.
Bài toán chứa tham số trong phương trình bậc hai
Nội dung Bài toán chứa tham số trong phương trình bậc hai Bản PDF - Nội dung bài viết Bài toán chứa tham số trong phương trình bậc haiI – KIẾN THỨC CƠ BẢNII – CÁC VÍ DỤ MINH HỌA Bài toán chứa tham số trong phương trình bậc hai Tài liệu này bao gồm 38 trang, cung cấp hướng dẫn chi tiết về cách giải bài toán chứa tham số trong phương trình bậc hai. Được thiết kế để hỗ trợ học sinh trong quá trình học chương trình Đại số lớp 9 và ôn thi tuyển sinh vào lớp 10 môn Toán. I – KIẾN THỨC CƠ BẢN 1. Trình bày ứng dụng của hệ thức Vi-ét trong việc giải phương trình bậc hai. - Phân tích các trường hợp đặc biệt khi phương trình bậc hai có hai nghiệm trái dấu, cùng dấu, dương hoặc âm. 2. Liệt kê các hệ thức thường gặp khi giải bài toán chứa tham số trong phương trình bậc hai. II – CÁC VÍ DỤ MINH HỌA Bao gồm 77 ví dụ minh họa, từ dễ đến khó, đi kèm đáp án và lời giải chi tiết để học sinh có thể hiểu rõ cách giải từng bước một.
Chuyên đề hình cầu, diện tích mặt cầu và thể tích hình cầu
Nội dung Chuyên đề hình cầu, diện tích mặt cầu và thể tích hình cầu Bản PDF - Nội dung bài viết Chuyên đề về hình cầu, diện tích mặt cầu và thể tích hình cầuTRỌNG TÂM CƠ BẢN CẦN ĐẠT Chuyên đề về hình cầu, diện tích mặt cầu và thể tích hình cầu Tài liệu này được biên soạn bởi tác giả Toán Học Sơ Đồ và bao gồm 52 trang. Nó tập trung vào kiến thức chính về hình cầu, diện tích mặt cầu và thể tích hình cầu, cung cấp hướng dẫn chi tiết để giải các dạng bài tập tự luận và trắc nghiệm liên quan đến chủ đề này. Được thiết kế để hỗ trợ học sinh trong quá trình học tập chương trình Hình học 9 chương 4 bài số 3. TRỌNG TÂM CƠ BẢN CẦN ĐẠT I. TÓM TẮT LÝ THUYẾT 1. Hình cầu: Hình cầu được tạo ra khi quay nửa hình tròn tâm O, bán kính R một vòng quanh đường kính cố định AB. Nó có tâm tại điểm O và bán kính R. 2. Cắt hình cầu bởi một mặt phẳng: Khi cắt hình cầu bằng một mặt phẳng, chúng ta thu được một hình tròn. Nếu mặt phẳng đi qua tâm của hình cầu, chúng ta thu được một đường tròn có bán kính bằng bán kính của hình cầu. 3. Diện tích, thể tích: Cho hình cầu bán kính R, diện tích mặt cầu được tính bằng công thức S = 4piR^2 và thể tích hình cầu được tính bằng công thức V = 4/3piR^3. II. BÀI TẬP VÀ CÁC DẠNG TOÁN 1. Dạng 1: Bài toán yêu cầu tính diện tích mặt cầu, thể tích hình cầu và các đại lượng liên quan, áp dụng các công thức S = 4piR^2 và V = 4/3piR^3 để giải. 2. Dạng 2: Bài tập tổng hợp, vận dụng kiến thức đã học để giải các bài toán phức tạp hơn. III. BÀI TẬP CƠ BẢN VỀ NHÀ B. NÂNG CAO VÀ PHÁT TRIỂN TƯ DUY C. TRẮC NGHIỆM RÈN LUYỆN PHẢN XẠ D. TỰ LUYỆN CƠ BẢN VÀ NÂNG CAO Tài liệu này sẽ giúp bạn hiểu rõ về hình cầu, diện tích mặt cầu và thể tích hình cầu, cung cấp các bài tập để rèn luyện và phát triển kỹ năng giải toán của mình.
Chuyên đề hình trụ, diện tích xung quanh và thể tích của hình trụ
Nội dung Chuyên đề hình trụ, diện tích xung quanh và thể tích của hình trụ Bản PDF - Nội dung bài viết Chuyên đề về hình trụ, diện tích xung quanh và thể tích Chuyên đề về hình trụ, diện tích xung quanh và thể tích Chuyên đề này bao gồm 26 trang, được biên soạn bởi tác giả Toán Học Sơ Đồ. Tài liệu tổng hợp kiến thức quan trọng về hình trụ, diện tích xung quanh và thể tích của hình trụ. Nó cung cấp phân dạng và hướng dẫn giải các dạng bài tập tự luận và trắc nghiệm liên quan đến chuyên đề này, nhằm hỗ trợ học sinh trong quá trình học tập chương trình hình học cấp 2, đặc biệt là chương 3 bài số 1. A. Trọng tâm cơ bản cần đạt: I. Tóm tắt lý thuyết: Cho hình trụ có bán kính đáy R và chiều cao h, ta có các công thức sau: Diện tích xung quanh: Sxq = 2πRh. Diện tích đáy: S = πR^2. Diện tích toàn phần: Stp = 2πRh + 2πR^2. Thể tích: V = πR^2h. II. Bài tập và các dạng toán: Dạng 1: Tính bán kính đáy, chiều cao, diện tích xung quanh, diện tích toàn phần và thể tích của hình trụ. Phương pháp giải: Sử dụng các công thức để tính toán các giá trị cần tìm. Dạng 2: Bài tập tổng hợp. Phương pháp giải: Kết hợp kiến thức về hình học phẳng và công thức về hình trụ để giải bài tập. III. Bài tập cơ bản về nhà B. Nâng cao phát triển tư duy C. Trắc nghiệm rèn luyện phản xạ D. Tự luyện cơ bản và nâng cao