Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề kiểm tra lần 1 Toán 10 năm 2023 - 2024 trường THPT Hùng Vương - Bình Phước

giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề kiểm tra chất lượng lần 1 môn Toán 10 năm học 2023 – 2024 trường THPT Hùng Vương, tỉnh Bình Phước. Đề thi được biên soạn theo định dạng trắc nghiệm mới nhất, với cấu trúc gồm 03 phần: Câu trắc nghiệm nhiều phương án lựa chọn; Câu trắc nghiệm đúng sai; Câu trắc nghiệm trả lời ngắn. Đề thi có đáp án và hướng dẫn chấm điểm mã đề 101. Trích dẫn Đề kiểm tra lần 1 Toán 10 năm 2023 – 2024 trường THPT Hùng Vương – Bình Phước : + Nhà Nam có một ao cá dạng hình chữ nhật MNPQ với chiều dài MQ m 20 chiều rộng MN m 14. Phần tam giác QST là nơi nuôi ếch MS m PT m 8 10 với S T lần lượt là các điểm nằm trên các cạnh MQ PQ (xem hình bên dưới). Nam đứng ở vị trí N câu cá và có thể quăng lưỡi câu xa nhất là bao nhiêu để lưỡi câu không rơi hẳn vào nơi nuôi ếch? Kết quả làm tròn 1 chữ số thập phân. + Trong mặt phẳng toạ độ Oxy cho tam giác DEF có DEF (-1;2), (2;1), (3;4). Các khẳng định sau đúng hay sai? a) Đường thẳng DE nhận ED là một vectơ chỉ phương. b) Đường cao kẻ từ E có một vectơ pháp tuyến là n = (2;1). c) Đường trung tuyến kẻ từ E có phương trình là x y 2 0. + Cho hàm số y fx xác định trên [−4;7] có đồ thị là đường gấp khúc như hình bên dưới. Các khẳng định sau đúng hay sai? a) f (2 4). b) Đồ thị hàm số đi qua điểm (−1;3). c) Hàm số đồng biến trên khoảng (−3;3). d) Có một giá trị của x để f x 0.

Nguồn: toanmath.com

Đọc Sách

Đề thi Toán 10 lần 1 năm 2019 - 2020 trường THPT Thạch Thành 1 - Thanh Hóa
giới thiệu đến quý thầy, cô giáo cùng các em học sinh đề thi Toán 10 lần 1 năm học 2019 – 2020 trường THPT Thạch Thành 1 – Thanh Hóa, kỳ thi được diễn ra trong giai đoạn giữa học kỳ 1 năm học 2019 – 2020, nhằm kiểm tra khảo sát chất lượng học tập môn Toán của học sinh khối lớp 10. Trích dẫn đề thi Toán 10 lần 1 năm 2019 – 2020 trường THPT Thạch Thành 1 – Thanh Hóa : + Cho hình bình hành ABCD có tâm O, N là trung điểm của cạnh AB, G là trọng tâm tam giác ABC. 1. Chứng minh AB – AC = OA – OD. 2. Tìm điểm M thỏa mãn MA + MB + MC = 4MD. 3. Phân tích vectơ GA theo hai vectơ BD và NC. 4. Biết tam giác ABC là tam giác cân, AB = a và góc ABC = 120 độ. Tính độ dài của vectơ BA + BC theo a. [ads] + Trong mặt phẳng tọa độ Oxy, cho v = 2i + 3j và điểm A(3;-5). 1. Tìm tọa độ của vectơ v. 2. Tìm tọa độ điểm B sao cho AB = v. 3. Tìm tọa độ điểm M thuộc trục hoành sao cho ba điểm A, B, M thẳng hàng. + Lập mệnh đề phủ định của mệnh đề sau và xét tính đúng sai của nó: Mọi hình vuông đều là hình thoi.
Đề thi thử THPTQG 2019 2020 Toán 10 lần 1 trường Ngô Sĩ Liên Bắc Giang
Nhằm giúp các em học sinh khối 10 sớm tiếp cận và rèn luyện kiến thức để hướng đến kỳ thi Trung học Phổ thông Quốc gia môn Toán, trường THPT Ngô Sĩ Liên – Bắc Giang tổ chức kỳ thi thử THPT Quốc gia lần 1 năm học 2019 – 2020 môn Toán 10. Đề thi thử THPTQG 2019 – 2020 Toán 10 lần 1 trường THPT Ngô Sĩ Liên – Bắc Giang mã đề 896, đề gồm 06 trang với 50 câu trắc nghiệm, thời gian làm bài 90 phút, đề nhằm kiểm tra kiến thức Toán 10 đã học, đề thi có đáp án. Trích dẫn đề thi thử THPTQG 2019 – 2020 Toán 10 lần 1 trường Ngô Sĩ Liên – Bắc Giang : + Cho tứ giác ABCD cố định và điểm M di chuyển thỏa mãn |MA + MB + MC| = |MB + MC + MD|. Tập hợp điểm M là: A. đường trung trực của đoạn GG’, với G, G’ lần lượt là trọng tâm tam giác ABC, tam giác BCD. B. đường tròn tâm G, với G là trọng tâm tam giác ABC. C. đường tròn tâm G, với G là trọng tâm tam giác BCD. D. đường trung trực của đoạn GG’, với G, G’ lần lượt là trọng tâm tam giác ABC, tam giác ACD. [ads] + Hai tổ của một lớp 10 có 21 học sinh đều giỏi ít nhất một trong hai môn Toán hoặc Văn, trong đó có 14 học sinh học giỏi môn Toán, 12 học sinh học giỏi môn Văn. Khi đó hai tổ trên có số học sinh học giỏi cả hai môn Toán và Văn là? + Cho hàm số y = -2x^2 + 8x – 2 có đồ thị là (P). Chọn khẳng định sai? A. (P) đi qua điểm M(-1;-12). B. Giá trị lớn nhất của hàm số bằng 2. C. Trục đối xứng của (P) là đường thẳng x = 2. D. (P) nghịch biến trên (2;+∞).
Đề kiểm tra định kỳ học kỳ 1 Toán 10 trường THPT Võ Thành Trinh - An Giang
Ngày 22 tháng 10 năm 2019, trường THPT Võ Thành Trinh, tỉnh An Giang tổ chức kỳ thi kiểm tra chất lượng định kỳ môn Toán 10 giai đoạn giữa học kỳ 1 năm học 2019 – 2020. Đề kiểm tra định kỳ học kỳ 1 Toán 10 trường THPT Võ Thành Trinh – An Giang có mã đề 999, đề gồm 15 câu trắc nghiệm và 03 câu tự luận, thời gian làm bài 45 phút, nội dung kiểm tra thuộc chủ đề: mệnh đề và tập hợp (Đại số 10 chương 1), hàm số bậc nhất và bậc hai (Đại số 10 chương 2), đề kiểm tra có đáp án. Trích dẫn đề kiểm tra định kỳ học kỳ 1 Toán 10 trường THPT Võ Thành Trinh – An Giang : + Cho parabol (P): y = x^2 + bx + c. a) Xác định các hệ số b, c biết (P) đi qua điểm M(2;3) và có trục đối xứng x = 3. b) Với các số b, c đã tìm được, hãy tính giá trị của hàm số tại x = −1. [ads] + Trong mặt phẳng tọa độ Oxy, cho hai đường thẳng d: y = 5x − 99 và d’: y = 5x + 11. Mệnh đề nào sau đây đúng? A. d cắt d’ nhưng không vuông góc. B. d vuông góc d’. C. d song song d’. D. d trùng với d’. + Cho hàm số y = 2x^2 − 4x có đồ thị như hình vẽ. Có tất cả giá trị nguyên của tham số m thuộc đoạn [0;5] để phương trình 2x^2 − 4x = 3m có hai nghiệm phân biệt?
Đề thi chất lượng lần 1 Toán 10 trường THPT Đào Duy Từ - Hà Nội
Đề thi chất lượng lần 1 Toán 10 trường THPT Đào Duy Từ – Hà Nội mã đề 132, đề gồm 04 trang với 25 câu trắc nghiệm và 03 câu tự luận, thời gian làm bài 90 phút, kỳ thi nhằm kiểm tra chất lượng học tập môn Toán của học sinh khối 10 trong giai đoạn giữa học kỳ 1 năm học 2019 – 2020. Trích dẫn đề thi chất lượng lần 1 Toán 10 trường THPT Đào Duy Từ – Hà Nội : + Cho đường thẳng d: y = 2x +1 – 2m và parabol (P) đi qua điểm A(1;0) và có đỉnh S(3;-4). a) Lập phương trình và vẽ parabol (P). b) Chứng minh rằng đường thẳng (d) luôn đi qua một điểm cố định. c) Chứng minh rằng đường thẳng d luôn cắt (P) tại hai điểm phân biệt. [ads] + Cho hàm số y = ax^2 + bc + c (a > 0). Khẳng định nào sau đây là sai? A. Đồ thị của hàm số luôn cắt trục hoành tại hai điểm phân biệt. B. Hàm số nghịch biến trên khoảng (-vc;-b/2a). C. Hàm số đồng biến trên khoảng (-b/2a;+vc). D. Đồ thị của hàm số có trục đối xứng là đường thẳng x = -b/2a. + Cho hàm số bậc nhất y = ax + b. Tìm a và b biết rằng đồ thị hàm số cắt đường thẳng d1: y = 2x + 5 tại điểm có hoành độ bằng –2 và cắt đường thẳng d2: y = -3x + 4 tại điểm có tung độ bằng –2.