Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề HSG lần 1 lớp 12 môn Toán năm 2022 2023 trường THPT Lê Văn Hưu Thanh Hóa

Nội dung Đề HSG lần 1 lớp 12 môn Toán năm 2022 2023 trường THPT Lê Văn Hưu Thanh Hóa Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn đội tuyển học sinh giỏi lần 1 môn Toán lớp 12 năm học 2022 – 2023 trường THPT Lê Văn Hưu, tỉnh Thanh Hóa; đề thi có đáp án trắc nghiệm mã đề 121. Trích dẫn Đề HSG lần 1 Toán lớp 12 năm 2022 – 2023 trường THPT Lê Văn Hưu – Thanh Hóa : + Một sinh viên ở trọ sử dụng một xô đựng nước có hình dạng và kích thước như hình vẽ, trong đó đáy xô hình tròn có bán kính bằng 20 cm, miệng xô là đường tròn có bán kính 30 cm, chiều cao xô là 80 cm. Mỗi tháng sinh viên đó dùng hết 20 xô nước đầy. Hỏi sinh viên đó phải trả bao nhiêu tiền nước mỗi tháng, biết giá nước do chủ nhà trọ quy định là 8000 đồng/m3 (số tiền được làm tròn đến đơn vị đồng)? + Bạn B vay một số tiền tại ngân hàng Agribank và trả góp số tiền đó trong vòng 3 tháng với mức lãi suất là 1% /tháng. Bạn B bắt đầu hoàn nợ, tháng thứ nhất bạn B trả ngân hàng số tiền là 10 triệu đồng, tháng thứ 2 bạn B trả ngân hàng 20 triệu đồng và tháng cuối bạn B trả ngân hàng 30 triệu đồng thì hết nợ. Vậy số tiền bạn B đã vay của ngân hàng là bao nhiêu. Chọn kết quả gần đúng nhất? + Trong không gian cho hình vuông ABCD cạnh bằng 2a. Gọi E, F lần lượt là trung điểm của các cạnh AB và CD. Khi quay hình vuông đó quanh EF ta được một hình trụ tròn xoay. Thể tích của khối trụ tròn xoay giới hạn bởi hình trụ nói trên bằng? File WORD (dành cho quý thầy, cô):

Nguồn: sytu.vn

Đọc Sách

Đề học sinh giỏi Toán 12 cấp tỉnh năm 2023 - 2024 sở GDĐT Hà Nam
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi môn Toán 12 cấp tỉnh năm học 2023 – 2024 sở Giáo dục và Đào tạo UBND tỉnh Hà Nam. Trích dẫn Đề học sinh giỏi Toán 12 cấp tỉnh năm 2023 – 2024 sở GD&ĐT Hà Nam : + Cho hình chóp có SA ABCD đáy ABCD là hình thang vuông tại A và B AD BC AB. Góc giữa mặt phẳng SBC và mặt phẳng ABCD bằng 0 60. Gọi M là trung điểm của cạnh và là điểm thỏa mãn ID AI 2. Gọi E F lần lượt là hình chiếu vuông góc của điểm A trên các cạnh SB SC. Gọi H là giao điểm của hai đường thẳng SI và AM. a) Tính thể tích khối tứ diện CDMI và khoảng cách giữa hai đường thẳng AM và SC. b) Tính thể tích khối nón có đáy là hình tròn ngoại tiếp EFH và đỉnh thuộc mặt phẳng ABCD. + Cho hình lăng trụ đứng ABC A B C ABC vuông tại A AB AC 2. Gọi E là điểm thỏa mãn EC EC 2. Khoảng cách từ điểm C’ đến mặt phẳng ABE bằng 12. Gọi là góc giữa mặt phẳng ABE và mặt phẳng ABC. Tìm cos để thể tích khối lăng trụ ABC A B C đạt giá trị nhỏ nhất. + Trong không gian với hệ tọa độ Oxyz, cho các điểm B 9 1 4 C 9 7 4. Trong các ABC thỏa mãn điểm A thuộc mặt phẳng Oxy các đường trung tuyến kẻ từ đỉnh B và C vuông góc với nhau sao cho góc A lớn nhất. Viết phương trình mặt cầu đường kính OA với O là gốc tọa độ.
Đề học sinh giỏi Toán 12 năm 2023 - 2024 trường THPT Bình Chiểu - TP HCM
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi cấp trường môn Toán 12 năm học 2023 – 2024 trường THPT Bình Chiểu, thành phố Hồ Chí Minh; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề học sinh giỏi Toán 12 năm 2023 – 2024 trường THPT Bình Chiểu – TP HCM : + Một người vay tiền ở một ngân hàng theo hình thức lãi kép với lãi suất 0,7%/tháng với tổng số tiền vay là 1 tỉ đồng. Mỗi tháng người đó đều trả cho ngân hàng một số tiền như nhau để trừ vào tiền gốc và lãi. Biết rằng đúng 25 tháng thì người đó trả hết gốc và lãi cho ngân hàng. Hỏi số tiền của người đó trả cho ngân hàng ở mỗi tháng là bao nhiêu? + Một người đàn ông muốn chèo thuyền từ vị trí A tới điểm B về phía hạ lưu bờ đối diện càng nhanh càng tốt trên một bờ sông thẳng rộng 3km (như hình vẽ). Anh có thể chèo thuyền của mình trực tiếp qua sông để đến C và sau đó chạy đến B, hay có thể chèo trực tiếp đến B, hoặc anh ta có thể chèo thuyền đến một điểm D giữa B và C và sau đó chạy đến B. Biết anh ấy có thể chèo thuyền 6km/h, chạy bộ 8km/h và quãng đường BC=8km. Biết tốc độ dòng nước là không đáng kể so với tốc độ chèo thuyền của người đàn ông. Tính khoảng thời gian ngắn nhất (đơn vị: giờ) để người đàn ông đến B. + Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng 2a. Mặt phẳng qua AB và trung điểm M của SC cắt hình chóp theo thiết diện có chu vi bằng 7a. Tính thể tích của khối nón có đỉnh là S và đường tròn đáy ngoại tiếp tứ giác ABCD.
Đề học sinh giỏi cấp tỉnh Toán THPT năm 2023 - 2024 sở GDĐT Bến Tre
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi cấp tỉnh môn Toán THPT năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Bến Tre; kỳ thi được diễn ra vào ngày 29 tháng 02 năm 2024. Trích dẫn Đề học sinh giỏi cấp tỉnh Toán THPT năm 2023 – 2024 sở GD&ĐT Bến Tre : + Có 16 quả cầu đôi một khác nhau, trong đó có 5 quả cầu màu vàng, 5 quả cầu màu xanh, 6 quả cầu màu đỏ. Có bao nhiêu cách chọn ra 10 quả cầu sao cho trong các quả cầu còn lại có đủ cả 3 màu. + Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và D, AB = 2a, AD = CD = a, SA vuông góc (ABCD). Góc giữa mặt phẳng (SBC) và mặt đáy (ABCD) là 60°. Mặt phẳng (P) đi qua CD và trọng tâm G của tam giác SAB, (P) cắt các cạnh SA, SB lần lượt tại M, N. Tính thể tích khối chóp S.CDMN theo a. + Cho hình chóp S.ABC có SA, SB, SC đôi một vuông góc với nhau tại S. Đặt SA = a, SB = b, SC = c. Chứng minh: a2tanBAC = b2tanABC = c2tanACB.
Đề học sinh giỏi Toán 12 cấp tỉnh năm 2023 - 2024 sở GDĐT Đồng Nai
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi môn Toán 12 cấp tỉnh năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Đồng Nai; kỳ thi được diễn ra vào ngày 19 tháng 01 năm 2024; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề học sinh giỏi Toán 12 cấp tỉnh năm 2023 – 2024 sở GD&ĐT Đồng Nai : + Tìm tọa độ hai điểm cực trị của đồ thị hàm số y = x3 − 3×2 + 9 và tính khoảng cách giữa hai điểm cực trị đó. Tìm nghiệm dương nhỏ nhất của phương trình 2 sin2 x − sin 2x + sin x − cos x − 1 = 0. + Cho một tấm bìa là nửa hình tròn tâm S đường kính AA0. Trên đoạn AA0 lần lượt lấy các điểm B, C, D, D0, C0, B0 thỏa mãn AB = BC = CD = DS = SD0 = D0C0 = C0B0 = B0A0, gọi O là trung điểm của SD. Lần lượt vẽ các nửa đường tròn tâm O đường kính DS, CD0, BC0, AB0. Dán hai bán kính SA với SA0 sao cho A trùng A0, B trùng B0, C trùng C0, D trùng D0 để tạo thành hình nón đỉnh S mà trên mặt xung quanh có đường xoắn ốc từ A đến S gồm các cung tròn đi qua A, B, C, D, S (như hình vẽ minh họa). Tính độ dài đường xoắn ốc, biết thể tích khối nón bằng 64√3π/3. + Hỏi có bao nhiêu cách sắp 6 quyển sách khác nhau vào 3 ngăn tủ khác nhau sao cho mỗi ngăn tủ có ít nhất một quyển sách? (Biết mỗi ngăn tủ có thể chứa được từ 1 đến 6 quyển sách và không kể thứ tự các quyển sách trong mỗi ngăn tủ).